Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg Model

We investigate a control problem leading to the optimal payment of dividends in a Cramér-Lundberg-type insurance model in which capital injections incur proportional cost, and may be used or not, the latter resulting in bankruptcy. For general claims, we provide verification results, using the absol...

Full description

Bibliographic Details
Main Authors: Florin Avram, Dan Goreac, Juan Li, Xiaochi Wu
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/9/931
_version_ 1827694404465328128
author Florin Avram
Dan Goreac
Juan Li
Xiaochi Wu
author_facet Florin Avram
Dan Goreac
Juan Li
Xiaochi Wu
author_sort Florin Avram
collection DOAJ
description We investigate a control problem leading to the optimal payment of dividends in a Cramér-Lundberg-type insurance model in which capital injections incur proportional cost, and may be used or not, the latter resulting in bankruptcy. For general claims, we provide verification results, using the absolute continuity of super-solutions of a convenient Hamilton-Jacobi variational inequality. As a by-product, for exponential claims, we prove the optimality of bounded buffer capital injections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>−</mo><mi>a</mi><mo>,</mo><mn>0</mn><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula> policies. These policies consist in stopping at the first time when the size of the overshoot below 0 exceeds a certain limit <i>a</i>, and only pay dividends when the reserve reaches an upper barrier <i>b</i>. An exhaustive and explicit characterization of optimal couples buffer/barrier is given via comprehensive structure equations. The optimal buffer is shown never to be of de Finetti (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) or Shreve-Lehoczy-Gaver (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>=</mo><mo>∞</mo></mrow></semantics></math></inline-formula>) type. The study results in a dichotomy between cheap and expensive equity, based on the cost-of-borrowing parameter, thus providing a non-trivial generalization of the Lokka-Zervos phase-transition Løkka-Zervos (2008). In the first case, companies start paying dividends at the barrier <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mo>*</mo></msup><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, while in the second they must wait for reserves to build up to some (fully determined) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mo>*</mo></msup><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> before paying dividends.
first_indexed 2024-03-10T12:04:36Z
format Article
id doaj.art-413ea6e8e00a47a2bcd01454cc9b728c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T12:04:36Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-413ea6e8e00a47a2bcd01454cc9b728c2023-11-21T16:38:44ZengMDPI AGMathematics2227-73902021-04-019993110.3390/math9090931Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg ModelFlorin Avram0Dan Goreac1Juan Li2Xiaochi Wu3Laboratoire de Mathématiques Appliquées, Université de Pau, F-64012 Pau, FranceSchool of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, ChinaSchool of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, ChinaSchool of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, ChinaWe investigate a control problem leading to the optimal payment of dividends in a Cramér-Lundberg-type insurance model in which capital injections incur proportional cost, and may be used or not, the latter resulting in bankruptcy. For general claims, we provide verification results, using the absolute continuity of super-solutions of a convenient Hamilton-Jacobi variational inequality. As a by-product, for exponential claims, we prove the optimality of bounded buffer capital injections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>−</mo><mi>a</mi><mo>,</mo><mn>0</mn><mo>,</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula> policies. These policies consist in stopping at the first time when the size of the overshoot below 0 exceeds a certain limit <i>a</i>, and only pay dividends when the reserve reaches an upper barrier <i>b</i>. An exhaustive and explicit characterization of optimal couples buffer/barrier is given via comprehensive structure equations. The optimal buffer is shown never to be of de Finetti (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) or Shreve-Lehoczy-Gaver (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>=</mo><mo>∞</mo></mrow></semantics></math></inline-formula>) type. The study results in a dichotomy between cheap and expensive equity, based on the cost-of-borrowing parameter, thus providing a non-trivial generalization of the Lokka-Zervos phase-transition Løkka-Zervos (2008). In the first case, companies start paying dividends at the barrier <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mo>*</mo></msup><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, while in the second they must wait for reserves to build up to some (fully determined) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mo>*</mo></msup><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> before paying dividends.https://www.mdpi.com/2227-7390/9/9/931optimal dividendscapital injectionsCramér-Lundberg modelbuffered reflectionscale functionsabsolutely continuous supersolutions
spellingShingle Florin Avram
Dan Goreac
Juan Li
Xiaochi Wu
Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg Model
Mathematics
optimal dividends
capital injections
Cramér-Lundberg model
buffered reflection
scale functions
absolutely continuous supersolutions
title Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg Model
title_full Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg Model
title_fullStr Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg Model
title_full_unstemmed Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg Model
title_short Equity Cost Induced Dichotomy for Optimal Dividends with Capital Injections in the Cramér-Lundberg Model
title_sort equity cost induced dichotomy for optimal dividends with capital injections in the cramer lundberg model
topic optimal dividends
capital injections
Cramér-Lundberg model
buffered reflection
scale functions
absolutely continuous supersolutions
url https://www.mdpi.com/2227-7390/9/9/931
work_keys_str_mv AT florinavram equitycostinduceddichotomyforoptimaldividendswithcapitalinjectionsinthecramerlundbergmodel
AT dangoreac equitycostinduceddichotomyforoptimaldividendswithcapitalinjectionsinthecramerlundbergmodel
AT juanli equitycostinduceddichotomyforoptimaldividendswithcapitalinjectionsinthecramerlundbergmodel
AT xiaochiwu equitycostinduceddichotomyforoptimaldividendswithcapitalinjectionsinthecramerlundbergmodel