A Comparative Experimental Study Analysis of Solar Based Thermoelectric Refrigerator Using Different Hot Side Heat Sink

The heat sink influences heat dissipation at the hot junction of the Peltier module and, hence, affects the performance of the thermoelectric refrigerator. The present work compares the performance of solar-powered thermoelectric refrigerator units with capacity (30 Liter) for two cases by employing...

Full description

Bibliographic Details
Main Authors: Nora Numan, Mahmmoud Mahdi, Majida Ahmed
Format: Article
Language:English
Published: Unviversity of Technology- Iraq 2022-01-01
Series:Engineering and Technology Journal
Subjects:
Online Access:https://etj.uotechnology.edu.iq/article_170670_784deffd7a4832cc52de4b04e4d008f5.pdf
Description
Summary:The heat sink influences heat dissipation at the hot junction of the Peltier module and, hence, affects the performance of the thermoelectric refrigerator. The present work compares the performance of solar-powered thermoelectric refrigerator units with capacity (30 Liter) for two cases by employing two different heat sink types. In case (I) The Peltier module (12706) is connected with a heat sink type of Hot wall air-cooled (HWAC). In case (II) the Same Peltier is connected with a heat sink type of hot wall air-cooled with a heat exchanger (HWACHE). The exergy analysis method can help to determine the exergy losses and exergy efficiency of the thermoelectrical refrigerator unit. Despite the change of the (COP) of the thermoelectrical refrigerator throughout the day. The average value of it in two cases was approximately (0.3). Furthermore, the exergy efficiency varied from a minimum value of (0.3%) to a maximum value (0.8%)in case (I). While it varies from the minimum value of (0.4%)to a maximum value of (1%) in case(II). Whereas the average exergy efficiency was 0.5% and 0.62% in case (I) and case (II) respectively This means that there is a percentage improvement in the average exergy efficiency of 19.4% in case (II) compared to the case (I).
ISSN:1681-6900
2412-0758