Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols
<p>The composition, morphology, and mixing structure of individual cloud residues (RES) and interstitial particles (INT) at a mountaintop site were investigated. Eight types of particles were identified, including sulfate-rich (S-rich), S-organic matter (OM), aged soot, aged mineral dust, aged...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-11-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/20/14063/2020/acp-20-14063-2020.pdf |
_version_ | 1818537260655575040 |
---|---|
author | Y. Fu Y. Fu Q. Lin Q. Lin G. Zhang G. Zhang Y. Yang Y. Yang Y. Yang Y. Yang X. Lian X. Lian L. Peng L. Peng F. Jiang F. Jiang F. Jiang X. Bi X. Bi L. Li Y. Wang D. Chen J. Ou X. Wang X. Wang P. Peng P. Peng J. Zhu G. Sheng |
author_facet | Y. Fu Y. Fu Q. Lin Q. Lin G. Zhang G. Zhang Y. Yang Y. Yang Y. Yang Y. Yang X. Lian X. Lian L. Peng L. Peng F. Jiang F. Jiang F. Jiang X. Bi X. Bi L. Li Y. Wang D. Chen J. Ou X. Wang X. Wang P. Peng P. Peng J. Zhu G. Sheng |
author_sort | Y. Fu |
collection | DOAJ |
description | <p>The composition, morphology, and mixing structure of
individual cloud residues (RES) and interstitial particles (INT) at a
mountaintop site were investigated. Eight types of particles were
identified, including sulfate-rich (S-rich), S-organic matter (OM), aged
soot, aged mineral dust, aged fly ash, aged metal, refractory, and aged
refractory mixture. A shift of dominant particle types from S-rich (29 %)
and aged soot (27 %) in the INT to aged refractory
mixture (23 %) and S-OM (22 %) in the RES is observed. In particular, particles with
organic shells are enriched in the RES (27 %) relative to the INT
(12 %). Our results highlight that the formation of more oxidized organic
matter in the cloud contributes to the existence of organic shells after
cloud processing. The fractal dimension (<span class="inline-formula"><i>D</i><sub>f</sub></span>), a morphologic parameter to
represent the branching degree of particles, for soot particles in the RES
(1.82 <span class="inline-formula">±</span> 0.12) is lower than that in the INT (2.11 <span class="inline-formula">±</span> 0.09), which
indicates that in-cloud processes may result in less compact soot. This
research emphasizes the role of in-cloud processes in the chemistry and
microphysical properties of individual particles. Given that organic
coatings may determine the particle hygroscopicity, activation ability, and
heterogeneous chemical reactivity, the increase of OM-shelled particles upon
in-cloud processes should have considerable implications.</p> |
first_indexed | 2024-12-11T18:48:29Z |
format | Article |
id | doaj.art-4158b51f2e924cc99f93f25a4a8f4a89 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-11T18:48:29Z |
publishDate | 2020-11-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-4158b51f2e924cc99f93f25a4a8f4a892022-12-22T00:54:22ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-11-0120140631407510.5194/acp-20-14063-2020Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosolsY. Fu0Y. Fu1Q. Lin2Q. Lin3G. Zhang4G. Zhang5Y. Yang6Y. Yang7Y. Yang8Y. Yang9X. Lian10X. Lian11L. Peng12L. Peng13F. Jiang14F. Jiang15F. Jiang16X. Bi17X. Bi18L. Li19Y. Wang20D. Chen21J. Ou22X. Wang23X. Wang24P. Peng25P. Peng26J. Zhu27G. Sheng28State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR Chinanow at: Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaGuangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, PR ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, PR ChinaCAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, PR Chinanow at: Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, GermanyState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaGuangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR ChinaInstitute of Mass Spectrometer and Atmosphere Environment, Jinan University, Guangzhou 510632, PR ChinaDepartment of Atmospheric Science, School of Earth Science, Zhejiang University, Hangzhou 310027, PR ChinaState Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Monitoring Center, Guangzhou 510308, PR ChinaShaoguan Environmental Monitoring Center, Shaoguan 512026, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaGuangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR ChinaGuangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR ChinaCAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, PR ChinaState Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China<p>The composition, morphology, and mixing structure of individual cloud residues (RES) and interstitial particles (INT) at a mountaintop site were investigated. Eight types of particles were identified, including sulfate-rich (S-rich), S-organic matter (OM), aged soot, aged mineral dust, aged fly ash, aged metal, refractory, and aged refractory mixture. A shift of dominant particle types from S-rich (29 %) and aged soot (27 %) in the INT to aged refractory mixture (23 %) and S-OM (22 %) in the RES is observed. In particular, particles with organic shells are enriched in the RES (27 %) relative to the INT (12 %). Our results highlight that the formation of more oxidized organic matter in the cloud contributes to the existence of organic shells after cloud processing. The fractal dimension (<span class="inline-formula"><i>D</i><sub>f</sub></span>), a morphologic parameter to represent the branching degree of particles, for soot particles in the RES (1.82 <span class="inline-formula">±</span> 0.12) is lower than that in the INT (2.11 <span class="inline-formula">±</span> 0.09), which indicates that in-cloud processes may result in less compact soot. This research emphasizes the role of in-cloud processes in the chemistry and microphysical properties of individual particles. Given that organic coatings may determine the particle hygroscopicity, activation ability, and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications.</p>https://acp.copernicus.org/articles/20/14063/2020/acp-20-14063-2020.pdf |
spellingShingle | Y. Fu Y. Fu Q. Lin Q. Lin G. Zhang G. Zhang Y. Yang Y. Yang Y. Yang Y. Yang X. Lian X. Lian L. Peng L. Peng F. Jiang F. Jiang F. Jiang X. Bi X. Bi L. Li Y. Wang D. Chen J. Ou X. Wang X. Wang P. Peng P. Peng J. Zhu G. Sheng Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols Atmospheric Chemistry and Physics |
title | Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols |
title_full | Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols |
title_fullStr | Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols |
title_full_unstemmed | Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols |
title_short | Impact of in-cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols |
title_sort | impact of in cloud aqueous processes on the chemical compositions and morphology of individual atmospheric aerosols |
url | https://acp.copernicus.org/articles/20/14063/2020/acp-20-14063-2020.pdf |
work_keys_str_mv | AT yfu impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT yfu impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT qlin impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT qlin impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT gzhang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT gzhang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT yyang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT yyang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT yyang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT yyang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT xlian impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT xlian impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT lpeng impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT lpeng impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT fjiang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT fjiang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT fjiang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT xbi impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT xbi impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT lli impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT ywang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT dchen impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT jou impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT xwang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT xwang impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT ppeng impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT ppeng impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT jzhu impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols AT gsheng impactofincloudaqueousprocessesonthechemicalcompositionsandmorphologyofindividualatmosphericaerosols |