Interactive effects of non-fodder litter and fungal species on soil enzymes: A microcosm temporal assessment from Indian arid zone

The interactive effects of three non-fodder Indian arid plant species, Tephrosia purpurea, Aerva persica, and Calotropis procera, and four Aspergillus fungal species on soil enzymes (acid and alkaline phosphatase, -glucosidase, dehydrogenase, urease, and amidase activities) were temporally assessed...

Full description

Bibliographic Details
Main Authors: Manohar Singh Suthar, Manish Mathur, Praveen Gehlot, Swami Sundarmoorthy
Format: Article
Language:English
Published: Action for Sustainable Efficacious Development and Awareness 2023-04-01
Series:Environment Conservation Journal
Subjects:
Online Access:https://journal.environcj.in/index.php/ecj/article/view/1639
Description
Summary:The interactive effects of three non-fodder Indian arid plant species, Tephrosia purpurea, Aerva persica, and Calotropis procera, and four Aspergillus fungal species on soil enzymes (acid and alkaline phosphatase, -glucosidase, dehydrogenase, urease, and amidase activities) were temporally assessed (15 and 30 days withdrawals). The results were statistically analysed using ANOVA, Principal Component Analysis (PCA), and Canonical Correlation Analysis (CCoA). Aside from these, a biochemical soil quality index was created by assigning a weighted score to each enzyme and analysing it using PCA. This study found that various litter-fungal species complexes acted differently and that their effects changed over time, specifically for acid phosphatase, alkaline phosphatase, beta-glucosidase, and amidase. Dehydrogenase and urease activities increased with predictors over time. With temporal backwash, all four fungal species with C. procera inhibit acid phosphatase, alkaline phosphatase, and beta-glucosidase activities (i.e., more at 15 days and lesser after 30 days). Our current findings suggest that (a) urease activities were modulated by A. persica in cooperation with fungi like A. terreus, A. niger, and A. flavus at specific enzyme levels; (b) In assistance with fungi such as A. fumigatus, A. niger, and A. persica, amidase concentration was successfully managed through litter of the legume plant species T. purpuria. (c) When C. procera and A. fumigatus, A. niger, and A. flavus worked together, they were most effective at supporting beta-glucosidase and dehydrogenase (d) Alkaline phosphatase and (e) acid phosphatase was more responsive to T. purpurea-A. terreus complexes than were T. purpurea-A. flavus and C. procera-A. terreus complexes.
ISSN:0972-3099
2278-5124