Deep learning optimal quantum annealing schedules for random Ising models

A crucial step in the race towards quantum advantage is optimizing quantum annealing using ad-hoc annealing schedules. Motivated by recent progress in the field, we propose to employ long-short term memory neural networks to automate the search for optimal annealing schedules for random Ising models...

Full description

Bibliographic Details
Main Authors: Pratibha Raghupati Hegde, Gianluca Passarelli, Giovanni Cantele, Procolo Lucignano
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ace547
_version_ 1797748684820054016
author Pratibha Raghupati Hegde
Gianluca Passarelli
Giovanni Cantele
Procolo Lucignano
author_facet Pratibha Raghupati Hegde
Gianluca Passarelli
Giovanni Cantele
Procolo Lucignano
author_sort Pratibha Raghupati Hegde
collection DOAJ
description A crucial step in the race towards quantum advantage is optimizing quantum annealing using ad-hoc annealing schedules. Motivated by recent progress in the field, we propose to employ long-short term memory neural networks to automate the search for optimal annealing schedules for random Ising models on regular graphs. By training our network using locally-adiabatic annealing paths, we are able to predict optimal annealing schedules for unseen instances and even larger graphs than those used for training.
first_indexed 2024-03-12T16:08:19Z
format Article
id doaj.art-417cc72cef5e4c3b928cfd5afce7b4af
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:08:19Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-417cc72cef5e4c3b928cfd5afce7b4af2023-08-09T14:14:34ZengIOP PublishingNew Journal of Physics1367-26302023-01-0125707301310.1088/1367-2630/ace547Deep learning optimal quantum annealing schedules for random Ising modelsPratibha Raghupati Hegde0https://orcid.org/0000-0002-6059-8249Gianluca Passarelli1https://orcid.org/0000-0002-3292-0034Giovanni Cantele2https://orcid.org/0000-0002-9567-3536Procolo Lucignano3https://orcid.org/0000-0003-2784-8485Dipartimento di Fisica ‘E. Pancini’, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario M. S. Angelo , via Cintia 21, 80126 Napoli, ItalyCNR-SPIN, c/o Complesso Universitario M. S. Angelo , via Cintia 21, 80126 Napoli, ItalyCNR-SPIN, c/o Complesso Universitario M. S. Angelo , via Cintia 21, 80126 Napoli, ItalyDipartimento di Fisica ‘E. Pancini’, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario M. S. Angelo , via Cintia 21, 80126 Napoli, ItalyA crucial step in the race towards quantum advantage is optimizing quantum annealing using ad-hoc annealing schedules. Motivated by recent progress in the field, we propose to employ long-short term memory neural networks to automate the search for optimal annealing schedules for random Ising models on regular graphs. By training our network using locally-adiabatic annealing paths, we are able to predict optimal annealing schedules for unseen instances and even larger graphs than those used for training.https://doi.org/10.1088/1367-2630/ace547quantum annealingmachine learningquantum optimisationadiabatic quantum algorithms
spellingShingle Pratibha Raghupati Hegde
Gianluca Passarelli
Giovanni Cantele
Procolo Lucignano
Deep learning optimal quantum annealing schedules for random Ising models
New Journal of Physics
quantum annealing
machine learning
quantum optimisation
adiabatic quantum algorithms
title Deep learning optimal quantum annealing schedules for random Ising models
title_full Deep learning optimal quantum annealing schedules for random Ising models
title_fullStr Deep learning optimal quantum annealing schedules for random Ising models
title_full_unstemmed Deep learning optimal quantum annealing schedules for random Ising models
title_short Deep learning optimal quantum annealing schedules for random Ising models
title_sort deep learning optimal quantum annealing schedules for random ising models
topic quantum annealing
machine learning
quantum optimisation
adiabatic quantum algorithms
url https://doi.org/10.1088/1367-2630/ace547
work_keys_str_mv AT pratibharaghupatihegde deeplearningoptimalquantumannealingschedulesforrandomisingmodels
AT gianlucapassarelli deeplearningoptimalquantumannealingschedulesforrandomisingmodels
AT giovannicantele deeplearningoptimalquantumannealingschedulesforrandomisingmodels
AT procololucignano deeplearningoptimalquantumannealingschedulesforrandomisingmodels