Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I

<p>In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions...

Full description

Bibliographic Details
Main Authors: A. Karagodin-Doyennel, E. Rozanov, T. Sukhodolov, T. Egorova, A. Saiz-Lopez, C. A. Cuevas, R. P. Fernandez, T. Sherwen, R. Volkamer, T. K. Koenig, T. Giroud, T. Peter
Format: Article
Language:English
Published: Copernicus Publications 2021-10-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/14/6623/2021/gmd-14-6623-2021.pdf
_version_ 1831728086126690304
author A. Karagodin-Doyennel
A. Karagodin-Doyennel
E. Rozanov
E. Rozanov
E. Rozanov
T. Sukhodolov
T. Sukhodolov
T. Sukhodolov
T. Egorova
A. Saiz-Lopez
C. A. Cuevas
R. P. Fernandez
R. P. Fernandez
T. Sherwen
T. Sherwen
R. Volkamer
R. Volkamer
R. Volkamer
R. Volkamer
T. K. Koenig
T. K. Koenig
T. Giroud
T. Peter
author_facet A. Karagodin-Doyennel
A. Karagodin-Doyennel
E. Rozanov
E. Rozanov
E. Rozanov
T. Sukhodolov
T. Sukhodolov
T. Sukhodolov
T. Egorova
A. Saiz-Lopez
C. A. Cuevas
R. P. Fernandez
R. P. Fernandez
T. Sherwen
T. Sherwen
R. Volkamer
R. Volkamer
R. Volkamer
R. Volkamer
T. K. Koenig
T. K. Koenig
T. Giroud
T. Peter
author_sort A. Karagodin-Doyennel
collection DOAJ
description <p>In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.</p>
first_indexed 2024-12-21T06:41:36Z
format Article
id doaj.art-417cf746fb574f8989d35385f43ac018
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-12-21T06:41:36Z
publishDate 2021-10-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-417cf746fb574f8989d35385f43ac0182022-12-21T19:12:41ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032021-10-01146623664510.5194/gmd-14-6623-2021Iodine chemistry in the chemistry–climate model SOCOL-AERv2-IA. Karagodin-Doyennel0A. Karagodin-Doyennel1E. Rozanov2E. Rozanov3E. Rozanov4T. Sukhodolov5T. Sukhodolov6T. Sukhodolov7T. Egorova8A. Saiz-Lopez9C. A. Cuevas10R. P. Fernandez11R. P. Fernandez12T. Sherwen13T. Sherwen14R. Volkamer15R. Volkamer16R. Volkamer17R. Volkamer18T. K. Koenig19T. K. Koenig20T. Giroud21T. Peter22The Institute for Atmospheric and Climate Science (IAC) ETH, Zurich, SwitzerlandThe Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Davos, SwitzerlandThe Institute for Atmospheric and Climate Science (IAC) ETH, Zurich, SwitzerlandThe Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Davos, SwitzerlandSaint Petersburg State University, Saint Petersburg, RussiaThe Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Davos, SwitzerlandSaint Petersburg State University, Saint Petersburg, RussiaInstitute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, AustriaThe Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Davos, SwitzerlandDepartment of Atmospheric Chemistry and Climate, IQFR-CSIC, Madrid, SpainDepartment of Atmospheric Chemistry and Climate, IQFR-CSIC, Madrid, SpainDepartment of Atmospheric Chemistry and Climate, IQFR-CSIC, Madrid, SpainInstitute for Interdisciplinary Science, National Research Council (ICB-CONICET), FCEN‐UNCuyo, Mendoza, ArgentinaNational Centre for Atmospheric Science, University of York, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UKThe Institute for Atmospheric and Climate Science (IAC) ETH, Zurich, SwitzerlandDepartment of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USACooperative Institute for Research in Environmental Sciences, Boulder, CO 80309, USALaboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDepartment of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USACooperative Institute for Research in Environmental Sciences, Boulder, CO 80309, USAThe Institute for Atmospheric and Climate Science (IAC) ETH, Zurich, SwitzerlandThe Institute for Atmospheric and Climate Science (IAC) ETH, Zurich, Switzerland<p>In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.</p>https://gmd.copernicus.org/articles/14/6623/2021/gmd-14-6623-2021.pdf
spellingShingle A. Karagodin-Doyennel
A. Karagodin-Doyennel
E. Rozanov
E. Rozanov
E. Rozanov
T. Sukhodolov
T. Sukhodolov
T. Sukhodolov
T. Egorova
A. Saiz-Lopez
C. A. Cuevas
R. P. Fernandez
R. P. Fernandez
T. Sherwen
T. Sherwen
R. Volkamer
R. Volkamer
R. Volkamer
R. Volkamer
T. K. Koenig
T. K. Koenig
T. Giroud
T. Peter
Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
Geoscientific Model Development
title Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
title_full Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
title_fullStr Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
title_full_unstemmed Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
title_short Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
title_sort iodine chemistry in the chemistry climate model socol aerv2 i
url https://gmd.copernicus.org/articles/14/6623/2021/gmd-14-6623-2021.pdf
work_keys_str_mv AT akaragodindoyennel iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT akaragodindoyennel iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT erozanov iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT erozanov iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT erozanov iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tsukhodolov iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tsukhodolov iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tsukhodolov iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tegorova iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT asaizlopez iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT cacuevas iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT rpfernandez iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT rpfernandez iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tsherwen iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tsherwen iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT rvolkamer iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT rvolkamer iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT rvolkamer iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT rvolkamer iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tkkoenig iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tkkoenig iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tgiroud iodinechemistryinthechemistryclimatemodelsocolaerv2i
AT tpeter iodinechemistryinthechemistryclimatemodelsocolaerv2i