$$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processes

Abstract In the paper, we investigate the moments $$\langle \xi _{2;a_1}^{\Vert ;n}\rangle $$ ⟨ ξ 2 ; a 1 ‖ ; n ⟩ of the axial-vector $$a_1(1260)$$ a 1 ( 1260 ) -meson distribution amplitude by using the QCD sum rules approach under the background field theory. By considering the vacuum condensates...

Full description

Bibliographic Details
Main Authors: Dan-Dan Hu, Hai-Bing Fu, Tao Zhong, Zai-Hui Wu, Xing-Gang Wu
Format: Article
Language:English
Published: SpringerOpen 2022-07-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-022-10555-y
_version_ 1828774930952486912
author Dan-Dan Hu
Hai-Bing Fu
Tao Zhong
Zai-Hui Wu
Xing-Gang Wu
author_facet Dan-Dan Hu
Hai-Bing Fu
Tao Zhong
Zai-Hui Wu
Xing-Gang Wu
author_sort Dan-Dan Hu
collection DOAJ
description Abstract In the paper, we investigate the moments $$\langle \xi _{2;a_1}^{\Vert ;n}\rangle $$ ⟨ ξ 2 ; a 1 ‖ ; n ⟩ of the axial-vector $$a_1(1260)$$ a 1 ( 1260 ) -meson distribution amplitude by using the QCD sum rules approach under the background field theory. By considering the vacuum condensates up to dimension-six and the perturbative part up to next-to-leading order QCD corrections, its first five moments at an initial scale $$\mu _0=1~{\mathrm{GeV}}$$ μ 0 = 1 GeV are $$\langle \xi _{2;a_1}^{\Vert ;2}\rangle |_{\mu _0} = 0.223 \pm 0.029$$ ⟨ ξ 2 ; a 1 ‖ ; 2 ⟩ | μ 0 = 0.223 ± 0.029 , $$\langle \xi _{2;a_1}^{\Vert ;4}\rangle |_{\mu _0} = 0.098 \pm 0.008$$ ⟨ ξ 2 ; a 1 ‖ ; 4 ⟩ | μ 0 = 0.098 ± 0.008 , $$\langle \xi _{2;a_1}^{\Vert ;6}\rangle |_{\mu _0} = 0.056 \pm 0.006$$ ⟨ ξ 2 ; a 1 ‖ ; 6 ⟩ | μ 0 = 0.056 ± 0.006 , $$\langle \xi _{2;a_1}^{\Vert ;8}\rangle |_{\mu _0} = 0.039 \pm 0.004$$ ⟨ ξ 2 ; a 1 ‖ ; 8 ⟩ | μ 0 = 0.039 ± 0.004 and $$\langle \xi _{2;a_1}^{\Vert ;10}\rangle |_{\mu _0} = 0.028 \pm 0.003$$ ⟨ ξ 2 ; a 1 ‖ ; 10 ⟩ | μ 0 = 0.028 ± 0.003 , respectively. We then construct a light-cone harmonic oscillator model for $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , whose model parameters are fitted by using the least squares method. As an application of $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , we calculate the transition form factors (TFFs) of $$D\rightarrow a_1(1260)$$ D → a 1 ( 1260 ) in large and intermediate momentum transfers by using the QCD light-cone sum rules approach. At the largest recoil point ( $$q^2=0$$ q 2 = 0 ), we obtain $$ A(0) = 0.130_{ - 0.013}^{ + 0.015}$$ A ( 0 ) = 0 . 130 - 0.013 + 0.015 , $$V_1(0) = 1.898_{-0.121}^{+0.128}$$ V 1 ( 0 ) = 1 . 898 - 0.121 + 0.128 , $$V_2(0) = 0.228_{-0.021}^{ + 0.020}$$ V 2 ( 0 ) = 0 . 228 - 0.021 + 0.020 , and $$V_0(0) = 0.217_{ - 0.025}^{ + 0.023}$$ V 0 ( 0 ) = 0 . 217 - 0.025 + 0.023 . By applying the extrapolated TFFs to the semi-leptonic decay $$D^{0(+)} \rightarrow a_1^{-(0)}(1260)\ell ^+\nu _\ell $$ D 0 ( + ) → a 1 - ( 0 ) ( 1260 ) ℓ + ν ℓ , we obtain $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) e^+\nu _e) = (5.261_{-0.639}^{+0.745}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) e + ν e ) = ( 5 . 261 - 0.639 + 0.745 ) × 10 - 5 , $${\mathcal {B}}(D^+\rightarrow a_1^0(1260) e^+\nu _e) = (6.673_{-0.811}^{+0.947}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) e + ν e ) = ( 6 . 673 - 0.811 + 0.947 ) × 10 - 5 , $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) \mu ^+ \nu _\mu )=(4.732_{-0.590}^{+0.685}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) μ + ν μ ) = ( 4 . 732 - 0.590 + 0.685 ) × 10 - 5 , $${\mathcal {B}}(D^+ \rightarrow a_1^0(1260) \mu ^+ \nu _\mu )=(6.002_{-0.748}^{+0.796}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) μ + ν μ ) = ( 6 . 002 - 0.748 + 0.796 ) × 10 - 5 .
first_indexed 2024-12-11T15:30:03Z
format Article
id doaj.art-4188cf546196424e8b1bc9a1640a64dc
institution Directory Open Access Journal
issn 1434-6052
language English
last_indexed 2024-12-11T15:30:03Z
publishDate 2022-07-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-4188cf546196424e8b1bc9a1640a64dc2022-12-22T01:00:05ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522022-07-0182711310.1140/epjc/s10052-022-10555-y$$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processesDan-Dan Hu0Hai-Bing Fu1Tao Zhong2Zai-Hui Wu3Xing-Gang Wu4Department of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Guizhou Minzu UniversityDepartment of Physics, Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing UniversityAbstract In the paper, we investigate the moments $$\langle \xi _{2;a_1}^{\Vert ;n}\rangle $$ ⟨ ξ 2 ; a 1 ‖ ; n ⟩ of the axial-vector $$a_1(1260)$$ a 1 ( 1260 ) -meson distribution amplitude by using the QCD sum rules approach under the background field theory. By considering the vacuum condensates up to dimension-six and the perturbative part up to next-to-leading order QCD corrections, its first five moments at an initial scale $$\mu _0=1~{\mathrm{GeV}}$$ μ 0 = 1 GeV are $$\langle \xi _{2;a_1}^{\Vert ;2}\rangle |_{\mu _0} = 0.223 \pm 0.029$$ ⟨ ξ 2 ; a 1 ‖ ; 2 ⟩ | μ 0 = 0.223 ± 0.029 , $$\langle \xi _{2;a_1}^{\Vert ;4}\rangle |_{\mu _0} = 0.098 \pm 0.008$$ ⟨ ξ 2 ; a 1 ‖ ; 4 ⟩ | μ 0 = 0.098 ± 0.008 , $$\langle \xi _{2;a_1}^{\Vert ;6}\rangle |_{\mu _0} = 0.056 \pm 0.006$$ ⟨ ξ 2 ; a 1 ‖ ; 6 ⟩ | μ 0 = 0.056 ± 0.006 , $$\langle \xi _{2;a_1}^{\Vert ;8}\rangle |_{\mu _0} = 0.039 \pm 0.004$$ ⟨ ξ 2 ; a 1 ‖ ; 8 ⟩ | μ 0 = 0.039 ± 0.004 and $$\langle \xi _{2;a_1}^{\Vert ;10}\rangle |_{\mu _0} = 0.028 \pm 0.003$$ ⟨ ξ 2 ; a 1 ‖ ; 10 ⟩ | μ 0 = 0.028 ± 0.003 , respectively. We then construct a light-cone harmonic oscillator model for $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , whose model parameters are fitted by using the least squares method. As an application of $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , we calculate the transition form factors (TFFs) of $$D\rightarrow a_1(1260)$$ D → a 1 ( 1260 ) in large and intermediate momentum transfers by using the QCD light-cone sum rules approach. At the largest recoil point ( $$q^2=0$$ q 2 = 0 ), we obtain $$ A(0) = 0.130_{ - 0.013}^{ + 0.015}$$ A ( 0 ) = 0 . 130 - 0.013 + 0.015 , $$V_1(0) = 1.898_{-0.121}^{+0.128}$$ V 1 ( 0 ) = 1 . 898 - 0.121 + 0.128 , $$V_2(0) = 0.228_{-0.021}^{ + 0.020}$$ V 2 ( 0 ) = 0 . 228 - 0.021 + 0.020 , and $$V_0(0) = 0.217_{ - 0.025}^{ + 0.023}$$ V 0 ( 0 ) = 0 . 217 - 0.025 + 0.023 . By applying the extrapolated TFFs to the semi-leptonic decay $$D^{0(+)} \rightarrow a_1^{-(0)}(1260)\ell ^+\nu _\ell $$ D 0 ( + ) → a 1 - ( 0 ) ( 1260 ) ℓ + ν ℓ , we obtain $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) e^+\nu _e) = (5.261_{-0.639}^{+0.745}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) e + ν e ) = ( 5 . 261 - 0.639 + 0.745 ) × 10 - 5 , $${\mathcal {B}}(D^+\rightarrow a_1^0(1260) e^+\nu _e) = (6.673_{-0.811}^{+0.947}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) e + ν e ) = ( 6 . 673 - 0.811 + 0.947 ) × 10 - 5 , $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) \mu ^+ \nu _\mu )=(4.732_{-0.590}^{+0.685}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) μ + ν μ ) = ( 4 . 732 - 0.590 + 0.685 ) × 10 - 5 , $${\mathcal {B}}(D^+ \rightarrow a_1^0(1260) \mu ^+ \nu _\mu )=(6.002_{-0.748}^{+0.796}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) μ + ν μ ) = ( 6 . 002 - 0.748 + 0.796 ) × 10 - 5 .https://doi.org/10.1140/epjc/s10052-022-10555-y
spellingShingle Dan-Dan Hu
Hai-Bing Fu
Tao Zhong
Zai-Hui Wu
Xing-Gang Wu
$$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processes
European Physical Journal C: Particles and Fields
title $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processes
title_full $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processes
title_fullStr $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processes
title_full_unstemmed $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processes
title_short $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude and the $$D\rightarrow a_1(1260)\ell ^+\nu _\ell $$ D → a 1 ( 1260 ) ℓ + ν ℓ decay processes
title_sort a 1 1260 a 1 1260 meson longitudinal twist 2 distribution amplitude and the d rightarrow a 1 1260 ell nu ell d a 1 1260 l ν l decay processes
url https://doi.org/10.1140/epjc/s10052-022-10555-y
work_keys_str_mv AT dandanhu a11260a11260mesonlongitudinaltwist2distributionamplitudeandthedrightarrowa11260ellnuellda11260lnldecayprocesses
AT haibingfu a11260a11260mesonlongitudinaltwist2distributionamplitudeandthedrightarrowa11260ellnuellda11260lnldecayprocesses
AT taozhong a11260a11260mesonlongitudinaltwist2distributionamplitudeandthedrightarrowa11260ellnuellda11260lnldecayprocesses
AT zaihuiwu a11260a11260mesonlongitudinaltwist2distributionamplitudeandthedrightarrowa11260ellnuellda11260lnldecayprocesses
AT xinggangwu a11260a11260mesonlongitudinaltwist2distributionamplitudeandthedrightarrowa11260ellnuellda11260lnldecayprocesses