Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data

Recent years have witnessed an increasing interest in air pollutants and their effects on human health. More generally, it has become evident how human, animal and environmental health are deeply interconnected within a One Health framework. Ground level air monitoring stations are sparse and thus h...

Full description

Bibliographic Details
Main Authors: Alessandro Fania, Alfonso Monaco, Ester Pantaleo, Tommaso Maggipinto, Loredana Bellantuono, Roberto Cilli, Antonio Lacalamita, Marianna La Rocca, Sabina Tangaro, Nicola Amoroso, Roberto Bellotti
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/7/1206
_version_ 1827286558278942720
author Alessandro Fania
Alfonso Monaco
Ester Pantaleo
Tommaso Maggipinto
Loredana Bellantuono
Roberto Cilli
Antonio Lacalamita
Marianna La Rocca
Sabina Tangaro
Nicola Amoroso
Roberto Bellotti
author_facet Alessandro Fania
Alfonso Monaco
Ester Pantaleo
Tommaso Maggipinto
Loredana Bellantuono
Roberto Cilli
Antonio Lacalamita
Marianna La Rocca
Sabina Tangaro
Nicola Amoroso
Roberto Bellotti
author_sort Alessandro Fania
collection DOAJ
description Recent years have witnessed an increasing interest in air pollutants and their effects on human health. More generally, it has become evident how human, animal and environmental health are deeply interconnected within a One Health framework. Ground level air monitoring stations are sparse and thus have limited coverage due to high costs. Satellite and reanalysis data represent an alternative with high spatio-temporal resolution. The idea of this work is to build an Artificial Intelligence model for the estimation of surface-level daily concentrations of air pollutants over the entire Italian territory using satellite, climate reanalysis, geographical and social data. As ground truth we use data from the monitoring stations of the Regional Environmental Protection Agency (ARPA) covering the period 2019–2022 at municipal level. The analysis compares different models and applies an Explainable Artificial Intelligence approach to evaluate the role of individual features in the model. The best model reaches an average <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> of 0.84 ± 0.01 and MAE of 5.00 ± 0.01 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/m<sup>3</sup> across all pollutants which compare well with the body of literature. The XAI analysis highlights the pivotal role of satellite and climate reanalysis data. Our work can facilitate One Health surveys and help researchers and policy makers.
first_indexed 2024-04-24T10:35:27Z
format Article
id doaj.art-4191d098e5184312a9461171d47a3aad
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-04-24T10:35:27Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-4191d098e5184312a9461171d47a3aad2024-04-12T13:25:37ZengMDPI AGRemote Sensing2072-42922024-03-01167120610.3390/rs16071206Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 DataAlessandro Fania0Alfonso Monaco1Ester Pantaleo2Tommaso Maggipinto3Loredana Bellantuono4Roberto Cilli5Antonio Lacalamita6Marianna La Rocca7Sabina Tangaro8Nicola Amoroso9Roberto Bellotti10Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyDipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyDipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyDipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, ItalyDipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyDipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyDipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, ItalyIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, ItalyDipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, ItalyRecent years have witnessed an increasing interest in air pollutants and their effects on human health. More generally, it has become evident how human, animal and environmental health are deeply interconnected within a One Health framework. Ground level air monitoring stations are sparse and thus have limited coverage due to high costs. Satellite and reanalysis data represent an alternative with high spatio-temporal resolution. The idea of this work is to build an Artificial Intelligence model for the estimation of surface-level daily concentrations of air pollutants over the entire Italian territory using satellite, climate reanalysis, geographical and social data. As ground truth we use data from the monitoring stations of the Regional Environmental Protection Agency (ARPA) covering the period 2019–2022 at municipal level. The analysis compares different models and applies an Explainable Artificial Intelligence approach to evaluate the role of individual features in the model. The best model reaches an average <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> of 0.84 ± 0.01 and MAE of 5.00 ± 0.01 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>g/m<sup>3</sup> across all pollutants which compare well with the body of literature. The XAI analysis highlights the pivotal role of satellite and climate reanalysis data. Our work can facilitate One Health surveys and help researchers and policy makers.https://www.mdpi.com/2072-4292/16/7/1206air pollutionsatellite datamachine learningexplainable artificial intelligence
spellingShingle Alessandro Fania
Alfonso Monaco
Ester Pantaleo
Tommaso Maggipinto
Loredana Bellantuono
Roberto Cilli
Antonio Lacalamita
Marianna La Rocca
Sabina Tangaro
Nicola Amoroso
Roberto Bellotti
Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data
Remote Sensing
air pollution
satellite data
machine learning
explainable artificial intelligence
title Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data
title_full Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data
title_fullStr Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data
title_full_unstemmed Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data
title_short Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data
title_sort estimation of daily ground level air pollution in italian municipalities with machine learning models using sentinel 5p and era5 data
topic air pollution
satellite data
machine learning
explainable artificial intelligence
url https://www.mdpi.com/2072-4292/16/7/1206
work_keys_str_mv AT alessandrofania estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT alfonsomonaco estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT esterpantaleo estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT tommasomaggipinto estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT loredanabellantuono estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT robertocilli estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT antoniolacalamita estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT mariannalarocca estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT sabinatangaro estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT nicolaamoroso estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data
AT robertobellotti estimationofdailygroundlevelairpollutioninitalianmunicipalitieswithmachinelearningmodelsusingsentinel5pandera5data