Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry
Abstract Iron and steel plants emit a large amount of CO2 and SO2 in the production process, and the high concentrations of acid gases lead to serious corrosion damage of concrete structures. In this paper, the environmental characteristics and corrosion damage degree of concrete in a 7-year-old cok...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-02-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-023-30015-1 |
_version_ | 1797864819415580672 |
---|---|
author | Yao Lv Ditao Niu Xiguang Liu Mingqiang Lin Yue-chen Li |
author_facet | Yao Lv Ditao Niu Xiguang Liu Mingqiang Lin Yue-chen Li |
author_sort | Yao Lv |
collection | DOAJ |
description | Abstract Iron and steel plants emit a large amount of CO2 and SO2 in the production process, and the high concentrations of acid gases lead to serious corrosion damage of concrete structures. In this paper, the environmental characteristics and corrosion damage degree of concrete in a 7-year-old coking ammonium sulfate workshop were investigated, and the neutralization life prediction of the concrete structure was carried out. Besides, the corrosion products were analyzed through concrete neutralization simulation test. The average temperature and relative humidity in the workshop were 34.7 °C and 43.4%, and they were 1.40 times higher and 1.70 times less than those of the general atmospheric environment, respectively. Both the concentrations of CO2 and SO2 were significantly different in various sections of the workshop, and they were much higher than those of the general atmospheric environment. The appearance corrosion and compressive strength loss of concrete were more serious in the sections with high SO2 concentration, such as vulcanization bed section and crystallization tank section. The neutralization depth of concrete in the crystallization tank section was the largest, with an average value of 19.86 mm. The corrosion products gypsum and CaCO3 were obviously visible in the surface layer of concrete, while only CaCO3 could be observed at 5 mm. The prediction model of concrete neutralization depth was established, and the remaining neutralization service life in the warehouse, synthesis section (indoor), synthesis section (outdoor), vulcanization bed section, and crystallization tank section were 69.21 a, 52.01 a, 88.56 a, 29.62 a, and 7.84 a, respectively. |
first_indexed | 2024-04-09T22:59:17Z |
format | Article |
id | doaj.art-41bc35b6e2e3494b8fc1512bddfe43ce |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-04-09T22:59:17Z |
publishDate | 2023-02-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-41bc35b6e2e3494b8fc1512bddfe43ce2023-03-22T11:05:29ZengNature PortfolioScientific Reports2045-23222023-02-0113111410.1038/s41598-023-30015-1Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industryYao Lv0Ditao Niu1Xiguang Liu2Mingqiang Lin3Yue-chen Li4School of Civil Engineering, Xi’an University of Architecture and TechnologySchool of Civil Engineering, Xi’an University of Architecture and TechnologySchool of Civil Engineering, Xi’an University of Architecture and TechnologySchool of Civil Engineering and Architecture, University of JinanSchool of Civil Engineering, Xi’an University of Architecture and TechnologyAbstract Iron and steel plants emit a large amount of CO2 and SO2 in the production process, and the high concentrations of acid gases lead to serious corrosion damage of concrete structures. In this paper, the environmental characteristics and corrosion damage degree of concrete in a 7-year-old coking ammonium sulfate workshop were investigated, and the neutralization life prediction of the concrete structure was carried out. Besides, the corrosion products were analyzed through concrete neutralization simulation test. The average temperature and relative humidity in the workshop were 34.7 °C and 43.4%, and they were 1.40 times higher and 1.70 times less than those of the general atmospheric environment, respectively. Both the concentrations of CO2 and SO2 were significantly different in various sections of the workshop, and they were much higher than those of the general atmospheric environment. The appearance corrosion and compressive strength loss of concrete were more serious in the sections with high SO2 concentration, such as vulcanization bed section and crystallization tank section. The neutralization depth of concrete in the crystallization tank section was the largest, with an average value of 19.86 mm. The corrosion products gypsum and CaCO3 were obviously visible in the surface layer of concrete, while only CaCO3 could be observed at 5 mm. The prediction model of concrete neutralization depth was established, and the remaining neutralization service life in the warehouse, synthesis section (indoor), synthesis section (outdoor), vulcanization bed section, and crystallization tank section were 69.21 a, 52.01 a, 88.56 a, 29.62 a, and 7.84 a, respectively.https://doi.org/10.1038/s41598-023-30015-1 |
spellingShingle | Yao Lv Ditao Niu Xiguang Liu Mingqiang Lin Yue-chen Li Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry Scientific Reports |
title | Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry |
title_full | Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry |
title_fullStr | Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry |
title_full_unstemmed | Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry |
title_short | Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry |
title_sort | corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry |
url | https://doi.org/10.1038/s41598-023-30015-1 |
work_keys_str_mv | AT yaolv corrosiondamageandlifepredictionofconcretestructureinthecokingammoniumsulfateworkshopofironandsteelindustry AT ditaoniu corrosiondamageandlifepredictionofconcretestructureinthecokingammoniumsulfateworkshopofironandsteelindustry AT xiguangliu corrosiondamageandlifepredictionofconcretestructureinthecokingammoniumsulfateworkshopofironandsteelindustry AT mingqianglin corrosiondamageandlifepredictionofconcretestructureinthecokingammoniumsulfateworkshopofironandsteelindustry AT yuechenli corrosiondamageandlifepredictionofconcretestructureinthecokingammoniumsulfateworkshopofironandsteelindustry |