Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves
Although ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on the...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/27/15/4782 |
_version_ | 1797441274159038464 |
---|---|
author | Shucheng Duan Jia Rui Liu Xin Wang Xue Mei Sun Han Sheng Gong Cheng Wu Jin Seok Hyun Eom |
author_facet | Shucheng Duan Jia Rui Liu Xin Wang Xue Mei Sun Han Sheng Gong Cheng Wu Jin Seok Hyun Eom |
author_sort | Shucheng Duan |
collection | DOAJ |
description | Although ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on the deglycosylation of bioactive compounds in ginseng leaves was analyzed. FIR treatment significantly increased the total polyphenol content (TPC) and kaempferol production from panasenoside conversion. The highest content or conversion ratio was observed at 180 °C (FIR-180). Major ginsenoside contents gradually decreased as the FIR temperature increased, while minor ginsenoside contents significantly increased. FIR exhibited high efficiency to produce dehydrated minor ginsenosides, of which F4, Rg6, Rh4, Rk3, Rk1, and Rg5 increased to their highest levels at FIR-190, by 278-, 149-, 176-, 275-, 64-, and 81-fold, respectively. Moreover, significantly increased antioxidant activities were also observed in FIR-treated leaves, particularly FIR-180, mainly due to the breakage of phenolic polymers to release antioxidants. These results suggest that FIR treatment is a rapid and efficient processing method for producing various health-beneficial bioactive compounds from ginseng leaves. After 30 min of treatment without leaf burning, FIR-190 was the optimum temperature for producing minor ginsenosides, whereas FIR-180 was the optimum temperature for producing polyphenols and kaempferol. In addition, the results suggested that the antioxidant benefits of ginseng leaves are mainly due to polyphenols rather than ginsenosides. |
first_indexed | 2024-03-09T12:21:39Z |
format | Article |
id | doaj.art-41cd94034a1e46afa67d8f5b447a9ac6 |
institution | Directory Open Access Journal |
issn | 1420-3049 |
language | English |
last_indexed | 2024-03-09T12:21:39Z |
publishDate | 2022-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj.art-41cd94034a1e46afa67d8f5b447a9ac62023-11-30T22:39:58ZengMDPI AGMolecules1420-30492022-07-012715478210.3390/molecules27154782Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng LeavesShucheng Duan0Jia Rui Liu1Xin Wang2Xue Mei Sun3Han Sheng Gong4Cheng Wu Jin5Seok Hyun Eom6College of Food Engineering, Ludong University, Yantai 264025, ChinaCollege of Food Engineering, Ludong University, Yantai 264025, ChinaCollege of Food Engineering, Ludong University, Yantai 264025, ChinaCollege of Food Engineering, Ludong University, Yantai 264025, ChinaCollege of Food Engineering, Ludong University, Yantai 264025, ChinaCollege of Food Engineering, Ludong University, Yantai 264025, ChinaDepartment of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, KoreaAlthough ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on the deglycosylation of bioactive compounds in ginseng leaves was analyzed. FIR treatment significantly increased the total polyphenol content (TPC) and kaempferol production from panasenoside conversion. The highest content or conversion ratio was observed at 180 °C (FIR-180). Major ginsenoside contents gradually decreased as the FIR temperature increased, while minor ginsenoside contents significantly increased. FIR exhibited high efficiency to produce dehydrated minor ginsenosides, of which F4, Rg6, Rh4, Rk3, Rk1, and Rg5 increased to their highest levels at FIR-190, by 278-, 149-, 176-, 275-, 64-, and 81-fold, respectively. Moreover, significantly increased antioxidant activities were also observed in FIR-treated leaves, particularly FIR-180, mainly due to the breakage of phenolic polymers to release antioxidants. These results suggest that FIR treatment is a rapid and efficient processing method for producing various health-beneficial bioactive compounds from ginseng leaves. After 30 min of treatment without leaf burning, FIR-190 was the optimum temperature for producing minor ginsenosides, whereas FIR-180 was the optimum temperature for producing polyphenols and kaempferol. In addition, the results suggested that the antioxidant benefits of ginseng leaves are mainly due to polyphenols rather than ginsenosides.https://www.mdpi.com/1420-3049/27/15/4782ginseng leaffar-infrared irradiationpolyphenolsginsenosidesantioxidantshealth benefits |
spellingShingle | Shucheng Duan Jia Rui Liu Xin Wang Xue Mei Sun Han Sheng Gong Cheng Wu Jin Seok Hyun Eom Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves Molecules ginseng leaf far-infrared irradiation polyphenols ginsenosides antioxidants health benefits |
title | Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves |
title_full | Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves |
title_fullStr | Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves |
title_full_unstemmed | Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves |
title_short | Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves |
title_sort | thermal control using far infrared irradiation for producing deglycosylated bioactive compounds from korean ginseng leaves |
topic | ginseng leaf far-infrared irradiation polyphenols ginsenosides antioxidants health benefits |
url | https://www.mdpi.com/1420-3049/27/15/4782 |
work_keys_str_mv | AT shuchengduan thermalcontrolusingfarinfraredirradiationforproducingdeglycosylatedbioactivecompoundsfromkoreanginsengleaves AT jiaruiliu thermalcontrolusingfarinfraredirradiationforproducingdeglycosylatedbioactivecompoundsfromkoreanginsengleaves AT xinwang thermalcontrolusingfarinfraredirradiationforproducingdeglycosylatedbioactivecompoundsfromkoreanginsengleaves AT xuemeisun thermalcontrolusingfarinfraredirradiationforproducingdeglycosylatedbioactivecompoundsfromkoreanginsengleaves AT hanshenggong thermalcontrolusingfarinfraredirradiationforproducingdeglycosylatedbioactivecompoundsfromkoreanginsengleaves AT chengwujin thermalcontrolusingfarinfraredirradiationforproducingdeglycosylatedbioactivecompoundsfromkoreanginsengleaves AT seokhyuneom thermalcontrolusingfarinfraredirradiationforproducingdeglycosylatedbioactivecompoundsfromkoreanginsengleaves |