Conics from the Cartan Decomposition of <i>SO</i>(2,1)

The aim of this paper is to introduce and study the class of conics provided by the symmetric matrices of the Cartan decomposition of the Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>...

Full description

Bibliographic Details
Main Author: Mircea Crasmareanu
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/7/1580
_version_ 1827746736294068224
author Mircea Crasmareanu
author_facet Mircea Crasmareanu
author_sort Mircea Crasmareanu
collection DOAJ
description The aim of this paper is to introduce and study the class of conics provided by the symmetric matrices of the Cartan decomposition of the Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. This class depends on two real parameters as components of the cylinder <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>S</mi><mn>1</mn></msup><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> and we use a deformation inspired by Finsler indicatrices in order to obtain proper ellipses. A complex approach is also included.
first_indexed 2024-03-11T05:30:32Z
format Article
id doaj.art-41ce330a9bca48f9a6f5e80c1adc346d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T05:30:32Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-41ce330a9bca48f9a6f5e80c1adc346d2023-11-17T17:07:39ZengMDPI AGMathematics2227-73902023-03-01117158010.3390/math11071580Conics from the Cartan Decomposition of <i>SO</i>(2,1)Mircea Crasmareanu0Faculty of Mathematics, University “Alexandru Ioan Cuza”, 700506 Iasi, RomaniaThe aim of this paper is to introduce and study the class of conics provided by the symmetric matrices of the Cartan decomposition of the Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. This class depends on two real parameters as components of the cylinder <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>S</mi><mn>1</mn></msup><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> and we use a deformation inspired by Finsler indicatrices in order to obtain proper ellipses. A complex approach is also included.https://www.mdpi.com/2227-7390/11/7/1580conicCartan decomposition of <i>SO</i>(2,1)complex variable
spellingShingle Mircea Crasmareanu
Conics from the Cartan Decomposition of <i>SO</i>(2,1)
Mathematics
conic
Cartan decomposition of <i>SO</i>(2,1)
complex variable
title Conics from the Cartan Decomposition of <i>SO</i>(2,1)
title_full Conics from the Cartan Decomposition of <i>SO</i>(2,1)
title_fullStr Conics from the Cartan Decomposition of <i>SO</i>(2,1)
title_full_unstemmed Conics from the Cartan Decomposition of <i>SO</i>(2,1)
title_short Conics from the Cartan Decomposition of <i>SO</i>(2,1)
title_sort conics from the cartan decomposition of i so i 2 1
topic conic
Cartan decomposition of <i>SO</i>(2,1)
complex variable
url https://www.mdpi.com/2227-7390/11/7/1580
work_keys_str_mv AT mirceacrasmareanu conicsfromthecartandecompositionofisoi21