Chilling-induced peach flavor loss is associated with expression and DNA methylation of functional genes

Introduction: Flavor is a major contributor to consumer preference. Despite being effective at extending the fruit’s commercial life, cold storage also results in a significant loss of flavor volatiles. To date, there has been few studies on the metabolic dynamics and the mechanism underlying the re...

Full description

Bibliographic Details
Main Authors: Wenyi Duan, Can Yang, Xiangmei Cao, Chunyan Wei, Kunsong Chen, Xian Li, Bo Zhang
Format: Article
Language:English
Published: Elsevier 2023-11-01
Series:Journal of Advanced Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2090123222002697
Description
Summary:Introduction: Flavor is a major contributor to consumer preference. Despite being effective at extending the fruit’s commercial life, cold storage also results in a significant loss of flavor volatiles. To date, there has been few studies on the metabolic dynamics and the mechanism underlying the regulatory networks that modulate flavor loss during cold storage for fruit. Methods: The volatile contents were detected by Gas Chromatography–Mass Spectrometer (GC–MS). Weighted gene co-expression network analysis (WGCNA) was used to identify structure genes and transcription factors (TFs). DNA methylation was analyzed by whole-genome methylation sequencing during cold storage. Results: We generated a temporal map, over hourly to weekly timescales, for the effects of chilling on flavor volatiles by combining metabolome, transcriptome, and DNA methylome in peach fruit. Based on the big data analysis, we developed a regulatory network for volatile formation and found that a decrease in volatiles during cold storage was significantly correlated with a decrease in the expression of synthesis genes. Moreover, TFs associated with these structure genes were identified. Expression of genes involved in ethylene biosynthesis was reduced while cold tolerance pathway was activated in response to low temperature. Functions of those genes were confirmed through transgenic experiments and across peach cultivars, suggesting our dataset is a useful tool for elucidating regulatory factors that have not yet been clarified in relation to flavor and cold tolerance. Genome wide DNA methylation was induced by chilling and peaked at 7 d followed by a decline during 28 d cold storage. Reduction of gene expression was accompanied by major changes in the methylation status of their promoters, including PpACS1, PpAAT1, PpTPS3 and PpMADS2. Conclusion: Our study revealed the mechanism for chilling-induced flavor loss of peach fruit through time-course transcriptome and DNA methylome analysis.
ISSN:2090-1232