Summary: | This study focuses on the behavior of a new fluorescent marker for labeling individual biomolecules and staining cell organelles developed on a <i>meso</i>-substituted BODIPY platform. Boron(III) complex with <i>meso</i>-4-methoxycarbonylpropylsubstituted 3,3’,5,5’-tetramethyl-2,2′-dipyrromethene has been synthesized and identified via visible, UV-, NMR- and MS-spectra <i>X</i>-ray. The behavior of fluorophore in solutions has been studied with various experimental techniques. It has been found that luminophore exhibits a high quantum yield (almost ~100–75%) in the blue-green region (513–520 nm) and has high photostability. In addition, biological analysis indicates that the fluorophore exhibits a tendency to effectively penetrate into cell membranes. On the other hand, the proposed BODIPY can be used to study the significant differences among a large number of pathogens of mycotic infections, as well as to visualize structural changes in the plasma membrane, which is necessary for the clearance of mammalian cells undergoing apoptotic cell death.
|