The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans.

UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult ani...

Full description

Bibliographic Details
Main Authors: Jyothsna Chitturi, Wesley Hung, Anas M Abdel Rahman, Min Wu, Maria A Lim, John Calarco, Renee Baran, Xun Huang, James W Dennis, Mei Zhen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-04-01
Series:PLoS Genetics
Online Access:http://europepmc.org/articles/PMC5931689?pdf=render
Description
Summary:UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling.
ISSN:1553-7390
1553-7404