Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis

Modernisation of municipal and industrial wastewater treatment plants (WWTPs) should be carried out, taking into account its impact on global warming, e.g., through carbon footprint (CF) analysis. An important industrial sector in Poland is the dairy industry. In dairy WWTPs, the aerobic sewage slud...

Full description

Bibliographic Details
Main Authors: Beata Karolinczak, Wojciech Dąbrowski, Radosław Żyłka
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/17/5366
Description
Summary:Modernisation of municipal and industrial wastewater treatment plants (WWTPs) should be carried out, taking into account its impact on global warming, e.g., through carbon footprint (CF) analysis. An important industrial sector in Poland is the dairy industry. In dairy WWTPs, the aerobic sewage sludge stabilisation applied thus far is being replaced by the anaerobic process. This change is positive due to the possibility of energy production, but it is unclear how it affects greenhouse gases (GHG) emissions. The aim of the research was to perform CF analysis for two scenarios of dairy WWTP operation. The analysis was based on the real operating data of the current system (current scenario) and project of its modernisation (alternative scenario). The current scenario consists of mechanical and dissolved air flotation (DAF) treatment, biological treatment in sequence batch reactors (SBRs), aerobic sewage sludge stabilisation and its final farmland usage. The alternative scenario assumes replacing aerobic stabilisation with anaerobic stabilisation and a combined heat and power (CHP) system. The CF calculations were based on empirical models, taking into account different emission input parameters, expressed in CO<sub>2</sub> equivalents (CO<sub>2e</sub>). The total CF of the current scenario was 22 kg CO<sub>2e</sub> PE<sup>−1</sup> year<sup>−1</sup>, while the alternative was 45 kg CO<sub>2e</sub> PE<sup>−1</sup> year<sup>−1</sup>. The largest share in the current scenario belongs to emissions from WWTPs and energy use, while in the alternative, there is the addition of emissions from biogas use.
ISSN:1996-1073