SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms
We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1) (as for the harmonic oscillator and the Pöschl-Teller systems) while the case κ < 0 i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2010-07-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | http://www.mdpi.com/2073-8994/2/3/1461/ |
Summary: | We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1) (as for the harmonic oscillator and the Pöschl-Teller systems) while the case κ < 0 is described by the compact group SU(2) (as for the Morse system). We construct the phase operators and the corresponding temporally stable phase eigenstates for Aκ in this group-theoretical context. The SU(2) case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices. |
---|---|
ISSN: | 2073-8994 |