Three-Dimensional Liver Culture Systems to Maintain Primary Hepatic Properties for Toxicological Analysis In Vitro

Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic propert...

Full description

Bibliographic Details
Main Author: Sarah Kammerer
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/19/10214
Description
Summary:Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.
ISSN:1661-6596
1422-0067