Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish

Accumulating studies have revealed the toxicity of antimony (Sb) to soil-dwelling and aquatic organisms at the individual level. However, little is known about the neurotoxic effects of antimony and its underlying mechanisms. To assess this issue, we investigated the neurotoxicity of antimony (0, 20...

Full description

Bibliographic Details
Main Authors: Siyu Xia, Xinhong Zhu, Yuepei Yan, Tao Zhang, Guoliang Chen, Daoxi Lei, Guixue Wang
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S014765132100419X
Description
Summary:Accumulating studies have revealed the toxicity of antimony (Sb) to soil-dwelling and aquatic organisms at the individual level. However, little is known about the neurotoxic effects of antimony and its underlying mechanisms. To assess this issue, we investigated the neurotoxicity of antimony (0, 200, 400, 600 and 800 mg/L) in zebrafish embryos. After exposure, zebrafish embryos showed abnormal phenotypes such as a shortened body length, morphological malformations, and weakened heart function. Behavioral experiments indicated that antimony caused neurotoxicity in zebrafish embryos, manifested in a decreased spontaneous movement frequency, delayed response to touch, and reduced movement distance. We also showed that antimony caused a decrease in acetylcholinesterase (AChE) levels in zebrafish embryos, along with decreased expression of neurofunctional markers such as gfap, nestin, mbp, and shha. Additionally, antimony significantly increased reactive oxygen species levels and significantly reduced glutathione (GSH) and superoxide dismutase (SOD) activity. In summary, our findings indicated that antimony can induce developmental toxicity and neurotoxicity in zebrafish embryos by affecting neurotransmitter systems and oxidative stress, thus altering behavior. These outcomes will advance our understanding of antimony-induced neurotoxicity, environmental problems, and health hazards.
ISSN:0147-6513