Trapezoidal-Type Inequalities for Strongly Convex and Quasi-Convex Functions via Post-Quantum Calculus
In this paper, we establish new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo><...
Main Authors: | Humaira Kalsoom, Miguel Vivas-Cortez, Muhammad Amer Latif |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/10/1238 |
Similar Items
-
Some (<i>p</i>, <i>q</i>)-Estimates of Hermite-Hadamard-Type Inequalities for Coordinated Convex and Quasi- Convex Functions
by: Humaira Kalsoom, et al.
Published: (2019-07-01) -
Some New Post-Quantum Simpson’s Type Inequalities for Coordinated Convex Functions
by: Fongchan Wannalookkhee, et al.
Published: (2022-03-01) -
On Hermite–Hadamard–Fejér-Type Inequalities for <i>η</i>-Convex Functions via Quantum Calculus
by: Nuttapong Arunrat, et al.
Published: (2023-08-01) -
On Some New Trapezoidal Type Inequalities for Twice (<i>p</i>, <i>q</i>) Differentiable Convex Functions in Post-Quantum Calculus
by: Thanin Sitthiwirattham, et al.
Published: (2021-09-01) -
Simpson- and Newton-Type Inequalities for Convex Functions via (<i>p</i>,<i>q</i>)-Calculus
by: Waewta Luangboon, et al.
Published: (2021-06-01)