Harmonic blending approximation

The concept of harmonic Hilbert space \(H_D({\mathbb R} ^n)\) was introduced in [2] as an extension of periodic Hilbert spaces [1], [2], [5], [6]. In [4] we introduced multivariate harmonic Hilbert spaces and studied approximation by exponential-type function in these spaces and derived error bound...

Full description

Bibliographic Details
Main Author: Franz-Jürgen Delvos
Format: Article
Language:English
Published: Publishing House of the Romanian Academy 2001-08-01
Series:Journal of Numerical Analysis and Approximation Theory
Online Access:https://www.ictp.acad.ro/jnaat/journal/article/view/693
Description
Summary:The concept of harmonic Hilbert space \(H_D({\mathbb R} ^n)\) was introduced in [2] as an extension of periodic Hilbert spaces [1], [2], [5], [6]. In [4] we introduced multivariate harmonic Hilbert spaces and studied approximation by exponential-type function in these spaces and derived error bounds in the uniform norm for special functions of exponential type which are defined by Fourier partial integrals \(S_b(f)\): \[ S_b(f)(x)=\int _{ {\mathbb R} ^n } \chi _{[-b,b]}(t) F(t) \exp (i(t,x)) dt, \] \([-b,b]=[-b_1,b_1]\times ... \times [-b_n ,b_n], \quad b_1>0,...,b_n>0\), where \( F(t)\sim \left( {\textstyle\frac 1{2\pi}}\right) ^n\ \int_{{\mathbb R} ^n}f(x) \exp (-i(x,t))dx \ \in L_2({\mathbb R} ^n) \cap L_1({\mathbb R} ^n) \) is the Fourier transform of \(f \in L_2({\mathbb R} ^n) \cap C_0({\mathbb R} ^n)\). In this paper we will investigate more general approximation operators \(S_\psi \) in harmonic Hilbert spaces of tensor product type.
ISSN:2457-6794
2501-059X