Development of High-Sensitivity Piezoresistive Sensors Based on Highly Breathable Spacer Fabric with TPU/PPy/PDA Coating

In recent years, the research of flexible sensors has become a hot topic in the field of wearable technology, attracting the attention of many researchers. However, it is still a difficult challenge to prepare low-cost and high-performance flexible sensors by a simple process. Three-dimensional spac...

Full description

Bibliographic Details
Main Authors: Xiujuan Wang, Xiaoyu Gao, Yu Wang, Xin Niu, Tanyu Wang, Yuanjun Liu, Fangxi Qi, Yaming Jiang, Hao Liu
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/5/859
Description
Summary:In recent years, the research of flexible sensors has become a hot topic in the field of wearable technology, attracting the attention of many researchers. However, it is still a difficult challenge to prepare low-cost and high-performance flexible sensors by a simple process. Three-dimensional spacer fabric (SF) are the ideal substrate for flexible pressure sensors due to its good compression resilience and high permeability (5747.7 mm/s, approximately 10 times that of cotton). In this paper, Thermoplastic polyurethane/Polypyrrole/Polydopamine/Space Fabric (TPU/PPy/PDA/SF) composite fabrics were prepared in a simple in-situ polymerization method by sequentially coating polydopamine (PDA) and Polypyrrole (PPy) on the surface of SF, followed by spin-coating of different polymers (thermoplastic polyurethane (TPU), polydimethylsiloxane (PDMS) and Ecoflex) on the PPy/PDA/SF surface. The results showed that the TPU/PPy/PDA/SF pressure sensors prepared by spin-coating TPU at 900 rpm at a concentration of 0.3 mol of pyrrole monomer (py) and a polymerization time of 60 min have optimum sensing performance, a wide working range (0–10 kPa), high sensitivity (97.28 kPa<sup>−1</sup>), fast response (60 ms), good cycling stability (>500 cycles), and real-time motion monitoring of different parts of the body (e.g., arms and knees). The TPU/PPy/PDA/SF piezoresistive sensor with high sensitivity on a highly permeable spacer fabric base developed in this paper has promising applications in the field of health monitoring.
ISSN:2073-4360