Overvoltage Simulation Analysis and Suppression of Breaking in a 35 kV Shunt Reactor

When a 35 kV distribution network has the problem of insufficient reactive power, the input of a shunt reactor is a common compensation method. Vacuum circuit breakers are widely used in 35 kV distribution networks because of their superior arc extinguishing performance and convenient maintenance. H...

Full description

Bibliographic Details
Main Authors: Jing Chen, Xiaoyue Chen, Siying Feng, Xinmeng Liu, Qin Liu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/5/1274
Description
Summary:When a 35 kV distribution network has the problem of insufficient reactive power, the input of a shunt reactor is a common compensation method. Vacuum circuit breakers are widely used in 35 kV distribution networks because of their superior arc extinguishing performance and convenient maintenance. However, in recent years, accidents involving vacuum circuit breakers breaking shunt reactors have occurred more frequently in China, such as high-frequency phase-to-phase short circuits, inter-turn burning losses, bus outlet short circuits, etc., which can cause serious damage and pose a greater threat to the safety of the power system. This paper focuses on the switching overvoltage generated by the vacuum circuit breaker cutting off the shunt reactor. Firstly, the mechanism of overvoltage generation is analyzed theoretically. It is concluded that the equivalent chopping current of the other two phases caused by the continuous reignition of the first open phase is the root cause of the high-amplitude interphase overvoltage. Based on the MODELS custom programming module in EMTP/ATP, according to the process of breaking and reigniting the circuit breaker, this paper uses Fortran language to compile the program and establishes a model of a vacuum circuit breaker, including power frequency current interception, high-frequency current, zero-crossing, breaking, and arc reignition modules. The vacuum circuit breaker is simulated for hundreds of continuous reignitions in milliseconds. Finally, a simulation study on the overvoltage suppression measures of a 35 kV shunt reactor is carried out. The comprehensive comparison of various suppression measures provides a reference for the reasonable selection of actual engineering conditions.
ISSN:1996-1073