Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus

In this article, we prove some new fractional dynamic inequalities on time scales via conformable calculus. By using chain rule and H&#246;lder&#8217;s inequality on timescales we establish the main results. When <inline-formula> <math display="inline"> <semantics>...

Full description

Bibliographic Details
Main Authors: Samir Saker, Mohammed Kenawy, Ghada AlNemer, Mohammed Zakarya
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/3/434
_version_ 1818289214693834752
author Samir Saker
Mohammed Kenawy
Ghada AlNemer
Mohammed Zakarya
author_facet Samir Saker
Mohammed Kenawy
Ghada AlNemer
Mohammed Zakarya
author_sort Samir Saker
collection DOAJ
description In this article, we prove some new fractional dynamic inequalities on time scales via conformable calculus. By using chain rule and H&#246;lder&#8217;s inequality on timescales we establish the main results. When <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> we obtain some well-known time-scale inequalities due to Hardy, Copson, Bennett and Leindler inequalities.
first_indexed 2024-12-13T02:08:43Z
format Article
id doaj.art-4284c1be99b44d27955690bc87ab8272
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-13T02:08:43Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4284c1be99b44d27955690bc87ab82722022-12-22T00:03:03ZengMDPI AGMathematics2227-73902020-03-018343410.3390/math8030434math8030434Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable CalculusSamir Saker0Mohammed Kenawy1Ghada AlNemer2Mohammed Zakarya3Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, EgyptDepartment of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, EgyptDepartment of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 105862, Riyadh, Saudi 11656, ArabiaDepartment of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi ArabiaIn this article, we prove some new fractional dynamic inequalities on time scales via conformable calculus. By using chain rule and H&#246;lder&#8217;s inequality on timescales we establish the main results. When <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> we obtain some well-known time-scale inequalities due to Hardy, Copson, Bennett and Leindler inequalities.https://www.mdpi.com/2227-7390/8/3/434fractional hardy’s inequalityfractional bennett’s inequalityfractional copson’s inequalityfractional leindler’s inequalitytimescalesconformable fractional calculusfractional hölder inequality
spellingShingle Samir Saker
Mohammed Kenawy
Ghada AlNemer
Mohammed Zakarya
Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus
Mathematics
fractional hardy’s inequality
fractional bennett’s inequality
fractional copson’s inequality
fractional leindler’s inequality
timescales
conformable fractional calculus
fractional hölder inequality
title Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus
title_full Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus
title_fullStr Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus
title_full_unstemmed Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus
title_short Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus
title_sort some fractional dynamic inequalities of hardy s type via conformable calculus
topic fractional hardy’s inequality
fractional bennett’s inequality
fractional copson’s inequality
fractional leindler’s inequality
timescales
conformable fractional calculus
fractional hölder inequality
url https://www.mdpi.com/2227-7390/8/3/434
work_keys_str_mv AT samirsaker somefractionaldynamicinequalitiesofhardystypeviaconformablecalculus
AT mohammedkenawy somefractionaldynamicinequalitiesofhardystypeviaconformablecalculus
AT ghadaalnemer somefractionaldynamicinequalitiesofhardystypeviaconformablecalculus
AT mohammedzakarya somefractionaldynamicinequalitiesofhardystypeviaconformablecalculus