Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells

Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole m...

Full description

Bibliographic Details
Main Authors: Lan-Feng Dong, Jaromira Kovarova, Martina Bajzikova, Ayenachew Bezawork-Geleta, David Svec, Berwini Endaya, Karishma Sachaphibulkij, Ana R Coelho, Natasa Sebkova, Anna Ruzickova, An S Tan, Katarina Kluckova, Kristyna Judasova, Katerina Zamecnikova, Zuzana Rychtarcikova, Vinod Gopalan, Ladislav Andera, Margarita Sobol, Bing Yan, Bijay Pattnaik, Naveen Bhatraju, Jaroslav Truksa, Pavel Stopka, Pavel Hozak, Alfred K Lam, Radislav Sedlacek, Paulo J Oliveira, Mikael Kubista, Anurag Agrawal, Katerina Dvorakova-Hortova, Jakub Rohlena, Michael V Berridge, Jiri Neuzil
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2017-02-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/22187
_version_ 1811227972466638848
author Lan-Feng Dong
Jaromira Kovarova
Martina Bajzikova
Ayenachew Bezawork-Geleta
David Svec
Berwini Endaya
Karishma Sachaphibulkij
Ana R Coelho
Natasa Sebkova
Anna Ruzickova
An S Tan
Katarina Kluckova
Kristyna Judasova
Katerina Zamecnikova
Zuzana Rychtarcikova
Vinod Gopalan
Ladislav Andera
Margarita Sobol
Bing Yan
Bijay Pattnaik
Naveen Bhatraju
Jaroslav Truksa
Pavel Stopka
Pavel Hozak
Alfred K Lam
Radislav Sedlacek
Paulo J Oliveira
Mikael Kubista
Anurag Agrawal
Katerina Dvorakova-Hortova
Jakub Rohlena
Michael V Berridge
Jiri Neuzil
author_facet Lan-Feng Dong
Jaromira Kovarova
Martina Bajzikova
Ayenachew Bezawork-Geleta
David Svec
Berwini Endaya
Karishma Sachaphibulkij
Ana R Coelho
Natasa Sebkova
Anna Ruzickova
An S Tan
Katarina Kluckova
Kristyna Judasova
Katerina Zamecnikova
Zuzana Rychtarcikova
Vinod Gopalan
Ladislav Andera
Margarita Sobol
Bing Yan
Bijay Pattnaik
Naveen Bhatraju
Jaroslav Truksa
Pavel Stopka
Pavel Hozak
Alfred K Lam
Radislav Sedlacek
Paulo J Oliveira
Mikael Kubista
Anurag Agrawal
Katerina Dvorakova-Hortova
Jakub Rohlena
Michael V Berridge
Jiri Neuzil
author_sort Lan-Feng Dong
collection DOAJ
description Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer.
first_indexed 2024-04-12T09:50:41Z
format Article
id doaj.art-4285105d6a3d4ae5a57e35604fc4c03d
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-12T09:50:41Z
publishDate 2017-02-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-4285105d6a3d4ae5a57e35604fc4c03d2022-12-22T03:37:50ZengeLife Sciences Publications LtdeLife2050-084X2017-02-01610.7554/eLife.22187Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cellsLan-Feng Dong0Jaromira Kovarova1Martina Bajzikova2Ayenachew Bezawork-Geleta3David Svec4Berwini Endaya5Karishma Sachaphibulkij6Ana R Coelho7Natasa Sebkova8Anna Ruzickova9An S Tan10Katarina Kluckova11Kristyna Judasova12Katerina Zamecnikova13Zuzana Rychtarcikova14Vinod Gopalan15Ladislav Andera16Margarita Sobol17Bing Yan18Bijay Pattnaik19Naveen Bhatraju20Jaroslav Truksa21Pavel Stopka22Pavel Hozak23Alfred K Lam24Radislav Sedlacek25Paulo J Oliveira26Mikael Kubista27Anurag Agrawal28Katerina Dvorakova-Hortova29Jakub Rohlena30Michael V Berridge31Jiri Neuzil32https://orcid.org/0000-0002-2478-2460School of Medical Science, Griffith University, Southport, AustraliaInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicSchool of Medical Science, Griffith University, Southport, AustraliaInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicSchool of Medical Science, Griffith University, Southport, AustraliaSchool of Medical Science, Griffith University, Southport, AustraliaInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, PortugalInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Prague, Czech RepublicInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicMalaghan Institute of Medical Research, Wellington, New ZealandInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic; Zittau/Goerlitz University of Applied Sciences, Zittau, GermanyInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Pharmacy, Charles University, Hradec Kralove, Czech RepublicSchool of Medical Science, Griffith University, Southport, Australia; School of Medicine, Griffith University, Southport, AustraliaInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicInstitute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech RepublicSchool of Medical Science, Griffith University, Southport, AustraliaCSIR Institute of Genomics and Integrative Biology, New Delhi, IndiaCSIR Institute of Genomics and Integrative Biology, New Delhi, IndiaInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicDepartment of Zoology, Faculty of Science, Charles University, Prague, Czech RepublicInstitute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech RepublicSchool of Medicine, Griffith University, Southport, AustraliaInstitute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech RepublicCNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, PortugalInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic; TATAA Biocenter, Gothenburg, SwedenCSIR Institute of Genomics and Integrative Biology, New Delhi, IndiaInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Prague, Czech RepublicInstitute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicMalaghan Institute of Medical Research, Wellington, New ZealandSchool of Medical Science, Griffith University, Southport, Australia; Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech RepublicRecently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer.https://elifesciences.org/articles/22187mitochondrial transferrespiration recoverytumour growth
spellingShingle Lan-Feng Dong
Jaromira Kovarova
Martina Bajzikova
Ayenachew Bezawork-Geleta
David Svec
Berwini Endaya
Karishma Sachaphibulkij
Ana R Coelho
Natasa Sebkova
Anna Ruzickova
An S Tan
Katarina Kluckova
Kristyna Judasova
Katerina Zamecnikova
Zuzana Rychtarcikova
Vinod Gopalan
Ladislav Andera
Margarita Sobol
Bing Yan
Bijay Pattnaik
Naveen Bhatraju
Jaroslav Truksa
Pavel Stopka
Pavel Hozak
Alfred K Lam
Radislav Sedlacek
Paulo J Oliveira
Mikael Kubista
Anurag Agrawal
Katerina Dvorakova-Hortova
Jakub Rohlena
Michael V Berridge
Jiri Neuzil
Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells
eLife
mitochondrial transfer
respiration recovery
tumour growth
title Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells
title_full Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells
title_fullStr Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells
title_full_unstemmed Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells
title_short Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells
title_sort horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial dna deficient cancer cells
topic mitochondrial transfer
respiration recovery
tumour growth
url https://elifesciences.org/articles/22187
work_keys_str_mv AT lanfengdong horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT jaromirakovarova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT martinabajzikova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT ayenachewbezaworkgeleta horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT davidsvec horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT berwiniendaya horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT karishmasachaphibulkij horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT anarcoelho horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT natasasebkova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT annaruzickova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT anstan horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT katarinakluckova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT kristynajudasova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT katerinazamecnikova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT zuzanarychtarcikova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT vinodgopalan horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT ladislavandera horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT margaritasobol horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT bingyan horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT bijaypattnaik horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT naveenbhatraju horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT jaroslavtruksa horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT pavelstopka horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT pavelhozak horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT alfredklam horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT radislavsedlacek horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT paulojoliveira horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT mikaelkubista horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT anuragagrawal horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT katerinadvorakovahortova horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT jakubrohlena horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT michaelvberridge horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells
AT jirineuzil horizontaltransferofwholemitochondriarestorestumorigenicpotentialinmitochondrialdnadeficientcancercells