Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser Treatment
An anode for solid oxide fuel cells (SOFCs) was fabricated using 3D inkjet printing and layer-by-layer laser treatment of compositions based on the NiO/YSZ system followed by thermal sintering. The samples were characterized by scanning electron microscopy and X-ray phase analysis. The study of the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Ceramics |
Subjects: | |
Online Access: | https://www.mdpi.com/2571-6131/5/4/79 |
_version_ | 1797460933535072256 |
---|---|
author | Inna Malbakhova Artem Bagishev Alexander Vorobyev Tatiana Borisenko Olga Logutenko Alexander Titkov |
author_facet | Inna Malbakhova Artem Bagishev Alexander Vorobyev Tatiana Borisenko Olga Logutenko Alexander Titkov |
author_sort | Inna Malbakhova |
collection | DOAJ |
description | An anode for solid oxide fuel cells (SOFCs) was fabricated using 3D inkjet printing and layer-by-layer laser treatment of compositions based on the NiO/YSZ system followed by thermal sintering. The samples were characterized by scanning electron microscopy and X-ray phase analysis. The study of the morphology of the as-prepared samples revealed the presence of both interlayer macroporosity and intralayer microporosity, which depends on the laser exposure during laser treatment. The use of graphite directly added to the printing composition as the pore former increased the intralayer porosity. The morphology and size of the pores were shown to be similar to those of the pore former. The microstructure and porosity of the anode support can be controlled by varying the laser exposure values and the graphite content of the ceramic composite, which in turn opens up great prospects for using these paste compositions and printing techniques for the manufacture of SOFC anode supports. |
first_indexed | 2024-03-09T17:12:12Z |
format | Article |
id | doaj.art-429188011ad041d5acca90c45ad264e8 |
institution | Directory Open Access Journal |
issn | 2571-6131 |
language | English |
last_indexed | 2024-03-09T17:12:12Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Ceramics |
spelling | doaj.art-429188011ad041d5acca90c45ad264e82023-11-24T13:57:05ZengMDPI AGCeramics2571-61312022-12-01541115112710.3390/ceramics5040079Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser TreatmentInna Malbakhova0Artem Bagishev1Alexander Vorobyev2Tatiana Borisenko3Olga Logutenko4Alexander Titkov5Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630090 Novosibirsk, RussiaInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630090 Novosibirsk, RussiaInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630090 Novosibirsk, RussiaInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630090 Novosibirsk, RussiaInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630090 Novosibirsk, RussiaInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze 18, 630090 Novosibirsk, RussiaAn anode for solid oxide fuel cells (SOFCs) was fabricated using 3D inkjet printing and layer-by-layer laser treatment of compositions based on the NiO/YSZ system followed by thermal sintering. The samples were characterized by scanning electron microscopy and X-ray phase analysis. The study of the morphology of the as-prepared samples revealed the presence of both interlayer macroporosity and intralayer microporosity, which depends on the laser exposure during laser treatment. The use of graphite directly added to the printing composition as the pore former increased the intralayer porosity. The morphology and size of the pores were shown to be similar to those of the pore former. The microstructure and porosity of the anode support can be controlled by varying the laser exposure values and the graphite content of the ceramic composite, which in turn opens up great prospects for using these paste compositions and printing techniques for the manufacture of SOFC anode supports.https://www.mdpi.com/2571-6131/5/4/79fuel cells3D printingadditive manufacturing technologies |
spellingShingle | Inna Malbakhova Artem Bagishev Alexander Vorobyev Tatiana Borisenko Olga Logutenko Alexander Titkov Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser Treatment Ceramics fuel cells 3D printing additive manufacturing technologies |
title | Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser Treatment |
title_full | Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser Treatment |
title_fullStr | Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser Treatment |
title_full_unstemmed | Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser Treatment |
title_short | Fabrication of NiO/YSZ-Based Anodes for Solid Oxide Fuel Cells by Hybrid 3D Inkjet Printing and Laser Treatment |
title_sort | fabrication of nio ysz based anodes for solid oxide fuel cells by hybrid 3d inkjet printing and laser treatment |
topic | fuel cells 3D printing additive manufacturing technologies |
url | https://www.mdpi.com/2571-6131/5/4/79 |
work_keys_str_mv | AT innamalbakhova fabricationofnioyszbasedanodesforsolidoxidefuelcellsbyhybrid3dinkjetprintingandlasertreatment AT artembagishev fabricationofnioyszbasedanodesforsolidoxidefuelcellsbyhybrid3dinkjetprintingandlasertreatment AT alexandervorobyev fabricationofnioyszbasedanodesforsolidoxidefuelcellsbyhybrid3dinkjetprintingandlasertreatment AT tatianaborisenko fabricationofnioyszbasedanodesforsolidoxidefuelcellsbyhybrid3dinkjetprintingandlasertreatment AT olgalogutenko fabricationofnioyszbasedanodesforsolidoxidefuelcellsbyhybrid3dinkjetprintingandlasertreatment AT alexandertitkov fabricationofnioyszbasedanodesforsolidoxidefuelcellsbyhybrid3dinkjetprintingandlasertreatment |