Summary: | Terahertz lensless phase retrieval imaging is a promising technique for non-destructive inspection applications. In the conventional multiple-plane phase retrieval method, the convergence speed due to wave propagations and measures with equal interval distance is slow and leads to stagnation. To address this drawback, we propose a nonlinear unequal spaced measurement scheme in which the interval space between adjacent measurement planes is gradually increasing, it can significantly increase the diversity of the intensity with a smaller number of required images. Both the simulation and experimental results demonstrate that our method enables quantitative phase and amplitude imaging with a faster speed and better image quality, while also being computationally efficient and robust to noise.
|