Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR

Quantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR) are mathematical models for the prediction of the chemical, physical or biological properties of chemical compounds. Usually, they are based on structural (grounded on fragment contribution) o...

Full description

Bibliographic Details
Main Authors: Paulo C. S. Costa, Joel S. Evangelista, Igor Leal, Paulo C. M. L. Miranda
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/1/60
_version_ 1797543143249281024
author Paulo C. S. Costa
Joel S. Evangelista
Igor Leal
Paulo C. M. L. Miranda
author_facet Paulo C. S. Costa
Joel S. Evangelista
Igor Leal
Paulo C. M. L. Miranda
author_sort Paulo C. S. Costa
collection DOAJ
description Quantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR) are mathematical models for the prediction of the chemical, physical or biological properties of chemical compounds. Usually, they are based on structural (grounded on fragment contribution) or calculated (centered on QSAR three-dimensional (QSAR-3D) or chemical descriptors) parameters. Hereby, we describe a Graph Theory approach for generating and mining molecular fragments to be used in QSAR or QSPR modeling based exclusively on fragment contributions. Merging of Molecular Graph Theory, Simplified Molecular Input Line Entry Specification (SMILES) notation, and the connection table data allows a precise way to differentiate and count the molecular fragments. Machine learning strategies generated models with outstanding root mean square error (RMSE) and R<sup>2</sup> values. We also present the software <i>Charming QSAR & QSPR</i>, written in Python, for the property prediction of chemical compounds while using this approach.
first_indexed 2024-03-10T13:40:31Z
format Article
id doaj.art-429894e28e8e4df2bdfab0c39e754fef
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T13:40:31Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-429894e28e8e4df2bdfab0c39e754fef2023-11-21T03:01:43ZengMDPI AGMathematics2227-73902020-12-01916010.3390/math9010060Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPRPaulo C. S. Costa0Joel S. Evangelista1Igor Leal2Paulo C. M. L. Miranda3Institute of Chemistry, University of Campinas—UNICAMP, Campinas, SP 13083-970, BrazilInstitute of Chemistry, University of Campinas—UNICAMP, Campinas, SP 13083-970, BrazilInstitute of Language Studies, University of Campinas—UNICAMP, Campinas, SP 13083-970, BrazilInstitute of Chemistry, University of Campinas—UNICAMP, Campinas, SP 13083-970, BrazilQuantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR) are mathematical models for the prediction of the chemical, physical or biological properties of chemical compounds. Usually, they are based on structural (grounded on fragment contribution) or calculated (centered on QSAR three-dimensional (QSAR-3D) or chemical descriptors) parameters. Hereby, we describe a Graph Theory approach for generating and mining molecular fragments to be used in QSAR or QSPR modeling based exclusively on fragment contributions. Merging of Molecular Graph Theory, Simplified Molecular Input Line Entry Specification (SMILES) notation, and the connection table data allows a precise way to differentiate and count the molecular fragments. Machine learning strategies generated models with outstanding root mean square error (RMSE) and R<sup>2</sup> values. We also present the software <i>Charming QSAR & QSPR</i>, written in Python, for the property prediction of chemical compounds while using this approach.https://www.mdpi.com/2227-7390/9/1/60fragment based QSARfragment based QSPRsupport vector machinerandom forestgradient boosting machine
spellingShingle Paulo C. S. Costa
Joel S. Evangelista
Igor Leal
Paulo C. M. L. Miranda
Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR
Mathematics
fragment based QSAR
fragment based QSPR
support vector machine
random forest
gradient boosting machine
title Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR
title_full Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR
title_fullStr Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR
title_full_unstemmed Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR
title_short Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR
title_sort chemical graph theory for property modeling in qsar and qspr charming qsar qspr
topic fragment based QSAR
fragment based QSPR
support vector machine
random forest
gradient boosting machine
url https://www.mdpi.com/2227-7390/9/1/60
work_keys_str_mv AT paulocscosta chemicalgraphtheoryforpropertymodelinginqsarandqsprcharmingqsarqspr
AT joelsevangelista chemicalgraphtheoryforpropertymodelinginqsarandqsprcharmingqsarqspr
AT igorleal chemicalgraphtheoryforpropertymodelinginqsarandqsprcharmingqsarqspr
AT paulocmlmiranda chemicalgraphtheoryforpropertymodelinginqsarandqsprcharmingqsarqspr