Synergistic effects of Lactobacillus plantarum and Staphylococcus carnosus on animal food components
Introduction. Various cultures of microorganisms have recently been used to accelerate technological processes. In this regard, it appears highly relevant to study the action of beneficial microorganisms on the components of food systems. Study objects and methods. The study objects included a mode...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Kemerovo State University
2020-10-01
|
Series: | Foods and Raw Materials |
Subjects: | |
Online Access: | http://jfrm.ru/files/archive/16/Ivankin.pdf |
Summary: | Introduction. Various cultures of microorganisms have recently been used to accelerate technological processes. In this regard, it appears highly relevant to study the action of beneficial microorganisms on the components of food systems.
Study objects and methods. The study objects included a model mixture of beef muscle and pork fat tissue with 2% salt, as well as a model protein. Lactobacillus plantarum and Staphylococcus carnosus were used in an amount of 1×107 CFU/g of raw material. The compositions of free amino and fatty acids, carbohydrates, and other components were analyzed by liquid and gas chromatography with mass-selective detection.
Results and discussion. We studied the effect of L. plantarum and S. carnosus on protein, lipid, and carbohydrate components of food systems based on animal raw materials. We found that the combined effect of the cultures was by 25% as effective as their individual use at 4×109 CFU/kg of raw material. The three-week hydrolysis of proteins to free amino acids was almost a third more effective than when the cultures were used separately. The synergistic effect of L. plantarum and S. carnosus on fat components was not detected reliably. Free monosaccharides formed more intensively when the cultures were used together. In particular, the amount of free lactose almost doubled, compared to the cultures’ individual action.
Conclusion. We described culture-caused quantitative changes in the main components of animal-based food systems: amino acids, fatty acids, carbohydrates, and basic organic compounds. Also, we identified substances that can affect the taste and aroma of final products when the cultures are used together or separately. These results make it possible to obtain products with a wide variety of sensory properties. |
---|---|
ISSN: | 2308-4057 2310-9599 |