Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type
In this article, we scrutinise the study of the existence of Sobolev type Atangana-Baleanu fractional integro-differential inclusions in Banach space. The results are gained by using Martelli’s fixed point theorem and ρ-resolvent operators. An example is given for theoretical result.
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-03-01
|
Series: | Alexandria Engineering Journal |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1110016822007694 |
_version_ | 1811162726152536064 |
---|---|
author | V. Vijayaraj C. Ravichandran Panumart Sawangtong Kottakkaran Sooppy Nisar |
author_facet | V. Vijayaraj C. Ravichandran Panumart Sawangtong Kottakkaran Sooppy Nisar |
author_sort | V. Vijayaraj |
collection | DOAJ |
description | In this article, we scrutinise the study of the existence of Sobolev type Atangana-Baleanu fractional integro-differential inclusions in Banach space. The results are gained by using Martelli’s fixed point theorem and ρ-resolvent operators. An example is given for theoretical result. |
first_indexed | 2024-04-10T06:33:53Z |
format | Article |
id | doaj.art-429e4520fcba4040827e54fd63920459 |
institution | Directory Open Access Journal |
issn | 1110-0168 |
language | English |
last_indexed | 2024-04-10T06:33:53Z |
publishDate | 2023-03-01 |
publisher | Elsevier |
record_format | Article |
series | Alexandria Engineering Journal |
spelling | doaj.art-429e4520fcba4040827e54fd639204592023-03-01T04:31:03ZengElsevierAlexandria Engineering Journal1110-01682023-03-0166249255Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev typeV. Vijayaraj0C. Ravichandran1Panumart Sawangtong2Kottakkaran Sooppy Nisar3Department of Mathematics, Kongunadu Arts and Science College, Coimbatore 641 029, IndiaDepartment of Mathematics, Kongunadu Arts and Science College, Coimbatore 641 029, IndiaDepartment of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; Corresponding author.Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi ArabiaIn this article, we scrutinise the study of the existence of Sobolev type Atangana-Baleanu fractional integro-differential inclusions in Banach space. The results are gained by using Martelli’s fixed point theorem and ρ-resolvent operators. An example is given for theoretical result.http://www.sciencedirect.com/science/article/pii/S111001682200769426A3347J3534K09 |
spellingShingle | V. Vijayaraj C. Ravichandran Panumart Sawangtong Kottakkaran Sooppy Nisar Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type Alexandria Engineering Journal 26A33 47J35 34K09 |
title | Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type |
title_full | Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type |
title_fullStr | Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type |
title_full_unstemmed | Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type |
title_short | Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type |
title_sort | existence results of atangana baleanu fractional integro differential inclusions of sobolev type |
topic | 26A33 47J35 34K09 |
url | http://www.sciencedirect.com/science/article/pii/S1110016822007694 |
work_keys_str_mv | AT vvijayaraj existenceresultsofatanganabaleanufractionalintegrodifferentialinclusionsofsobolevtype AT cravichandran existenceresultsofatanganabaleanufractionalintegrodifferentialinclusionsofsobolevtype AT panumartsawangtong existenceresultsofatanganabaleanufractionalintegrodifferentialinclusionsofsobolevtype AT kottakkaransooppynisar existenceresultsofatanganabaleanufractionalintegrodifferentialinclusionsofsobolevtype |