An upper bound on binomial coefficients in the de Moivre – Laplace form

We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent f...

Full description

Bibliographic Details
Main Author: Sergey V. Agievich
Format: Article
Language:Belarusian
Published: Belarusian State University 2022-04-01
Series:Журнал Белорусского государственного университета: Математика, информатика
Subjects:
Online Access:https://journals.bsu.by/index.php/mathematics/article/view/4525
_version_ 1811229185157365760
author Sergey V. Agievich
author_facet Sergey V. Agievich
author_sort Sergey V. Agievich
collection DOAJ
description We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.
first_indexed 2024-04-12T10:09:48Z
format Article
id doaj.art-42a4fdd404e94ab685abecfd677a863c
institution Directory Open Access Journal
issn 2520-6508
2617-3956
language Belarusian
last_indexed 2024-04-12T10:09:48Z
publishDate 2022-04-01
publisher Belarusian State University
record_format Article
series Журнал Белорусского государственного университета: Математика, информатика
spelling doaj.art-42a4fdd404e94ab685abecfd677a863c2022-12-22T03:37:20ZbelBelarusian State UniversityЖурнал Белорусского государственного университета: Математика, информатика2520-65082617-39562022-04-011667410.33581/2520-6508-2022-1-66-744525An upper bound on binomial coefficients in the de Moivre – Laplace formSergey V. Agievich0Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, BelarusWe provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.https://journals.bsu.by/index.php/mathematics/article/view/4525binomial coefficientde moivre – laplace theoremwalsh – hadamard spectrumbent functionsum of squares representation
spellingShingle Sergey V. Agievich
An upper bound on binomial coefficients in the de Moivre – Laplace form
Журнал Белорусского государственного университета: Математика, информатика
binomial coefficient
de moivre – laplace theorem
walsh – hadamard spectrum
bent function
sum of squares representation
title An upper bound on binomial coefficients in the de Moivre – Laplace form
title_full An upper bound on binomial coefficients in the de Moivre – Laplace form
title_fullStr An upper bound on binomial coefficients in the de Moivre – Laplace form
title_full_unstemmed An upper bound on binomial coefficients in the de Moivre – Laplace form
title_short An upper bound on binomial coefficients in the de Moivre – Laplace form
title_sort upper bound on binomial coefficients in the de moivre laplace form
topic binomial coefficient
de moivre – laplace theorem
walsh – hadamard spectrum
bent function
sum of squares representation
url https://journals.bsu.by/index.php/mathematics/article/view/4525
work_keys_str_mv AT sergeyvagievich anupperboundonbinomialcoefficientsinthedemoivrelaplaceform
AT sergeyvagievich upperboundonbinomialcoefficientsinthedemoivrelaplaceform