An upper bound on binomial coefficients in the de Moivre – Laplace form
We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent f...
Main Author: | Sergey V. Agievich |
---|---|
Format: | Article |
Language: | Belarusian |
Published: |
Belarusian State University
2022-04-01
|
Series: | Журнал Белорусского государственного университета: Математика, информатика |
Subjects: | |
Online Access: | https://journals.bsu.by/index.php/mathematics/article/view/4525 |
Similar Items
-
REGULAR METHOD FOR SYNTHESIS OF BASIC BENT-SQUARES OF RANDOM ORDER
by: A. V. Sokolov
Published: (2016-08-01) -
De Moivre’s and Euler Formulas for Matrices of Hybrid Numbers
by: Mücahit Akbıyık, et al.
Published: (2021-09-01) -
Some combinatorial identities containing central binomial coefficients or Catalan numbers*
by: Feng Qi, et al.
Published: (2023-12-01) -
Binomial distribution [kasetvideo]
Published: ([19-) -
Binomial distribution [filem]
Published: ([19-)