Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study

Potential evaporation (PET) is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate F...

Full description

Bibliographic Details
Main Authors: F. C. Sperna Weiland, C. Tisseuil, H. H. Dürr, M. Vrac, L. P. H. van Beek
Format: Article
Language:English
Published: Copernicus Publications 2012-03-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/16/983/2012/hess-16-983-2012.pdf
_version_ 1818517182432149504
author F. C. Sperna Weiland
C. Tisseuil
H. H. Dürr
M. Vrac
L. P. H. van Beek
author_facet F. C. Sperna Weiland
C. Tisseuil
H. H. Dürr
M. Vrac
L. P. H. van Beek
author_sort F. C. Sperna Weiland
collection DOAJ
description Potential evaporation (PET) is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate Forecast System Reanalysis (CFSR) data are compared: Penman-Monteith, Priestley-Taylor and original and re-calibrated versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1) evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2) tested on their usability for modeling of global discharge cycles. <br><br> A major finding is that for part of the investigated basins the selection of a PET method may have only a minor influence on the resulting river flow. Within the hydrological model used in this study the bias related to the PET method tends to decrease while going from PET, AET and runoff to discharge calculations. However, the performance of individual PET methods appears to be spatially variable, which stresses the necessity to select the most accurate and spatially stable PET method. The lowest root mean squared differences and the least significant deviations (95% significance level) between monthly CFSR derived PET time series and CRU derived PET were obtained for a cell-specific re-calibrated Blaney-Criddle equation. However, results show that this re-calibrated form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation applied to the CFSR data did not outperform the other methods in a evaluation against PET derived with the Penman-Monteith equation from CRU data. In arid regions (e.g. Sahara, central Australia, US deserts), the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e.g. Orange, Murray and Zambezi). Furthermore, the Penman-Monteith equation has a high data demand and the equation is sensitive to input data inaccuracy. Therefore, we recommend the re-calibrated form of the Hargreaves equation which globally gave reference PET values comparable to CRU derived values for multiple climate conditions. <br><br> The resulting gridded daily PET time series provide a new reference dataset that can be used for future hydrological impact assessments in further research, or more specifically, for the statistical downscaling of daily PET derived from raw GCM data. The dataset can be downloaded from <a href ="http://opendap.deltares.nl/thredds/dodsC/opendap/deltares/FEWS-IPCC"target="_blank">http://opendap.deltares.nl/thredds/dodsC/opendap/deltares/FEWS-IPCC</a>.
first_indexed 2024-12-11T00:52:44Z
format Article
id doaj.art-42b0a6141260482995a0dfc9051d3330
institution Directory Open Access Journal
issn 1027-5606
1607-7938
language English
last_indexed 2024-12-11T00:52:44Z
publishDate 2012-03-01
publisher Copernicus Publications
record_format Article
series Hydrology and Earth System Sciences
spelling doaj.art-42b0a6141260482995a0dfc9051d33302022-12-22T01:26:35ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382012-03-01163983100010.5194/hess-16-983-2012Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model studyF. C. Sperna WeilandC. TisseuilH. H. DürrM. VracL. P. H. van BeekPotential evaporation (PET) is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate Forecast System Reanalysis (CFSR) data are compared: Penman-Monteith, Priestley-Taylor and original and re-calibrated versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1) evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2) tested on their usability for modeling of global discharge cycles. <br><br> A major finding is that for part of the investigated basins the selection of a PET method may have only a minor influence on the resulting river flow. Within the hydrological model used in this study the bias related to the PET method tends to decrease while going from PET, AET and runoff to discharge calculations. However, the performance of individual PET methods appears to be spatially variable, which stresses the necessity to select the most accurate and spatially stable PET method. The lowest root mean squared differences and the least significant deviations (95% significance level) between monthly CFSR derived PET time series and CRU derived PET were obtained for a cell-specific re-calibrated Blaney-Criddle equation. However, results show that this re-calibrated form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation applied to the CFSR data did not outperform the other methods in a evaluation against PET derived with the Penman-Monteith equation from CRU data. In arid regions (e.g. Sahara, central Australia, US deserts), the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e.g. Orange, Murray and Zambezi). Furthermore, the Penman-Monteith equation has a high data demand and the equation is sensitive to input data inaccuracy. Therefore, we recommend the re-calibrated form of the Hargreaves equation which globally gave reference PET values comparable to CRU derived values for multiple climate conditions. <br><br> The resulting gridded daily PET time series provide a new reference dataset that can be used for future hydrological impact assessments in further research, or more specifically, for the statistical downscaling of daily PET derived from raw GCM data. The dataset can be downloaded from <a href ="http://opendap.deltares.nl/thredds/dodsC/opendap/deltares/FEWS-IPCC"target="_blank">http://opendap.deltares.nl/thredds/dodsC/opendap/deltares/FEWS-IPCC</a>.http://www.hydrol-earth-syst-sci.net/16/983/2012/hess-16-983-2012.pdf
spellingShingle F. C. Sperna Weiland
C. Tisseuil
H. H. Dürr
M. Vrac
L. P. H. van Beek
Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study
Hydrology and Earth System Sciences
title Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study
title_full Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study
title_fullStr Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study
title_full_unstemmed Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study
title_short Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study
title_sort selecting the optimal method to calculate daily global reference potential evaporation from cfsr reanalysis data for application in a hydrological model study
url http://www.hydrol-earth-syst-sci.net/16/983/2012/hess-16-983-2012.pdf
work_keys_str_mv AT fcspernaweiland selectingtheoptimalmethodtocalculatedailyglobalreferencepotentialevaporationfromcfsrreanalysisdataforapplicationinahydrologicalmodelstudy
AT ctisseuil selectingtheoptimalmethodtocalculatedailyglobalreferencepotentialevaporationfromcfsrreanalysisdataforapplicationinahydrologicalmodelstudy
AT hhdurr selectingtheoptimalmethodtocalculatedailyglobalreferencepotentialevaporationfromcfsrreanalysisdataforapplicationinahydrologicalmodelstudy
AT mvrac selectingtheoptimalmethodtocalculatedailyglobalreferencepotentialevaporationfromcfsrreanalysisdataforapplicationinahydrologicalmodelstudy
AT lphvanbeek selectingtheoptimalmethodtocalculatedailyglobalreferencepotentialevaporationfromcfsrreanalysisdataforapplicationinahydrologicalmodelstudy