Duo property for rings by the quasinilpotent perspective

In this paper, we focus on the duo ring property via quasinilpotent elements, which gives a new kind of generalizations of commutativity. We call this kind of rings qnil-duo. Firstly, some properties of quasinilpotents in a ring are provided. Then the set of quasinilpotents is applied to the duo pro...

Fuld beskrivelse

Bibliografiske detaljer
Main Authors: A. Harmanci, Y. Kurtulmaz, B. Ungor
Format: Article
Sprog:English
Udgivet: Vasyl Stefanyk Precarpathian National University 2021-10-01
Serier:Karpatsʹkì Matematičnì Publìkacìï
Fag:
Online adgang:https://journals.pnu.edu.ua/index.php/cmp/article/view/4761
Beskrivelse
Summary:In this paper, we focus on the duo ring property via quasinilpotent elements, which gives a new kind of generalizations of commutativity. We call this kind of rings qnil-duo. Firstly, some properties of quasinilpotents in a ring are provided. Then the set of quasinilpotents is applied to the duo property of rings, in this perspective, we introduce and study right (resp., left) qnil-duo rings. We show that this concept is not left-right symmetric. Among others, it is proved that if the Hurwitz series ring $H(R; \alpha)$ is right qnil-duo, then $R$ is right qnil-duo. Every right qnil-duo ring is abelian. A right qnil-duo exchange ring has stable range 1.
ISSN:2075-9827
2313-0210