Computing multidimensional persistence

<p>The theory of multidimensional persistence captures the topology of a multifiltration - a multiparameter family of increasing spaces.  Multifiltrations arise naturally in the topological analysis of scientific data.  In this paper, we give a polynomial time algorithm for computing multidime...

Full description

Bibliographic Details
Main Authors: Gunnar Carlsson, Gurjeet Singh, Afra J. Zomorodian
Format: Article
Language:English
Published: Carleton University 2010-11-01
Series:Journal of Computational Geometry
Online Access:http://jocg.org/index.php/jocg/article/view/19
_version_ 1818582090885627904
author Gunnar Carlsson
Gurjeet Singh
Afra J. Zomorodian
author_facet Gunnar Carlsson
Gurjeet Singh
Afra J. Zomorodian
author_sort Gunnar Carlsson
collection DOAJ
description <p>The theory of multidimensional persistence captures the topology of a multifiltration - a multiparameter family of increasing spaces.  Multifiltrations arise naturally in the topological analysis of scientific data.  In this paper, we give a polynomial time algorithm for computing multidimensional persistence.  We recast this computation as a problem within computational commutative algebra and utilize algorithms from this area to solve it.  While the resulting problem is EXPSPACE-complete and the standard algorithms take doubly-exponential time, we exploit the structure inherent withing multifiltrations to yield practical algorithms.  We implement all algorithms in the paper and provide statistical experiments to demonstrate their feasibility.</p>
first_indexed 2024-12-16T07:43:52Z
format Article
id doaj.art-42c11cd19726436ba85f6ebcecaa2c52
institution Directory Open Access Journal
issn 1920-180X
language English
last_indexed 2024-12-16T07:43:52Z
publishDate 2010-11-01
publisher Carleton University
record_format Article
series Journal of Computational Geometry
spelling doaj.art-42c11cd19726436ba85f6ebcecaa2c522022-12-21T22:39:00ZengCarleton UniversityJournal of Computational Geometry1920-180X2010-11-011110.20382/jocg.v1i1a610Computing multidimensional persistenceGunnar Carlsson0Gurjeet Singh1Afra J. Zomorodian2Stanford UniversityStanford UniversityDartmouth College<p>The theory of multidimensional persistence captures the topology of a multifiltration - a multiparameter family of increasing spaces.  Multifiltrations arise naturally in the topological analysis of scientific data.  In this paper, we give a polynomial time algorithm for computing multidimensional persistence.  We recast this computation as a problem within computational commutative algebra and utilize algorithms from this area to solve it.  While the resulting problem is EXPSPACE-complete and the standard algorithms take doubly-exponential time, we exploit the structure inherent withing multifiltrations to yield practical algorithms.  We implement all algorithms in the paper and provide statistical experiments to demonstrate their feasibility.</p>http://jocg.org/index.php/jocg/article/view/19
spellingShingle Gunnar Carlsson
Gurjeet Singh
Afra J. Zomorodian
Computing multidimensional persistence
Journal of Computational Geometry
title Computing multidimensional persistence
title_full Computing multidimensional persistence
title_fullStr Computing multidimensional persistence
title_full_unstemmed Computing multidimensional persistence
title_short Computing multidimensional persistence
title_sort computing multidimensional persistence
url http://jocg.org/index.php/jocg/article/view/19
work_keys_str_mv AT gunnarcarlsson computingmultidimensionalpersistence
AT gurjeetsingh computingmultidimensionalpersistence
AT afrajzomorodian computingmultidimensionalpersistence