Stochastic Antiresonance for Systems with Multiplicative Noise and Sector-Type Nonlinearities

The paradigm of stochastic antiresonance is considered for a class of nonlinear systems with sector bounded nonlinearities. Such systems arise in a variety of situations such as in engineering applications, in physics, in biology, and in systems with more general nonlinearities, approximated by a wi...

Full description

Bibliographic Details
Main Authors: Adrian-Mihail Stoica, Isaac Yaesh
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/26/2/115
Description
Summary:The paradigm of stochastic antiresonance is considered for a class of nonlinear systems with sector bounded nonlinearities. Such systems arise in a variety of situations such as in engineering applications, in physics, in biology, and in systems with more general nonlinearities, approximated by a wide neural network of a single hidden layer, such as the error equation of Hopfield networks with respect to equilibria or visuo-motor tasks. It is shown that driving such systems with a certain amount of state-multiplicative noise, one can stabilize noise-free unstable systems. Linear-Matrix-Inequality-based stabilization conditions are derived, utilizing a novel non-quadratic Lyapunov functional and a numerical example where state-multiplicative noise stabilizes a nonlinear system exhibiting chaotic behavior is demonstrated.
ISSN:1099-4300