Inequalities for the Polar Derivative of a Polynomial

<p/> <p>Let <inline-formula> <graphic file="1029-242X-2009-515709-i1.gif"/></inline-formula> be a polynomial of degree <inline-formula> <graphic file="1029-242X-2009-515709-i2.gif"/></inline-formula> and for any real or complex numb...

Full description

Bibliographic Details
Main Authors: Bidkham M, Shakeri M, Eshaghi Gordji M
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2009/515709
_version_ 1818759782377455616
author Bidkham M
Shakeri M
Eshaghi Gordji M
author_facet Bidkham M
Shakeri M
Eshaghi Gordji M
author_sort Bidkham M
collection DOAJ
description <p/> <p>Let <inline-formula> <graphic file="1029-242X-2009-515709-i1.gif"/></inline-formula> be a polynomial of degree <inline-formula> <graphic file="1029-242X-2009-515709-i2.gif"/></inline-formula> and for any real or complex number <inline-formula> <graphic file="1029-242X-2009-515709-i3.gif"/></inline-formula>, and let <inline-formula> <graphic file="1029-242X-2009-515709-i4.gif"/></inline-formula> denote the polar derivative of the polynomial <inline-formula> <graphic file="1029-242X-2009-515709-i5.gif"/></inline-formula> with respect to <inline-formula> <graphic file="1029-242X-2009-515709-i6.gif"/></inline-formula>. In this paper, we obtain new results concerning the maximum modulus of a polar derivative of a polynomial with restricted zeros. Our results generalize as well as improve upon some well-known polynomial inequalities.</p>
first_indexed 2024-12-18T06:48:12Z
format Article
id doaj.art-42cdc88ae1184029b093581328a30360
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-18T06:48:12Z
publishDate 2009-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-42cdc88ae1184029b093581328a303602022-12-21T21:17:25ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2009-01-0120091515709Inequalities for the Polar Derivative of a PolynomialBidkham MShakeri MEshaghi Gordji M<p/> <p>Let <inline-formula> <graphic file="1029-242X-2009-515709-i1.gif"/></inline-formula> be a polynomial of degree <inline-formula> <graphic file="1029-242X-2009-515709-i2.gif"/></inline-formula> and for any real or complex number <inline-formula> <graphic file="1029-242X-2009-515709-i3.gif"/></inline-formula>, and let <inline-formula> <graphic file="1029-242X-2009-515709-i4.gif"/></inline-formula> denote the polar derivative of the polynomial <inline-formula> <graphic file="1029-242X-2009-515709-i5.gif"/></inline-formula> with respect to <inline-formula> <graphic file="1029-242X-2009-515709-i6.gif"/></inline-formula>. In this paper, we obtain new results concerning the maximum modulus of a polar derivative of a polynomial with restricted zeros. Our results generalize as well as improve upon some well-known polynomial inequalities.</p>http://www.journalofinequalitiesandapplications.com/content/2009/515709
spellingShingle Bidkham M
Shakeri M
Eshaghi Gordji M
Inequalities for the Polar Derivative of a Polynomial
Journal of Inequalities and Applications
title Inequalities for the Polar Derivative of a Polynomial
title_full Inequalities for the Polar Derivative of a Polynomial
title_fullStr Inequalities for the Polar Derivative of a Polynomial
title_full_unstemmed Inequalities for the Polar Derivative of a Polynomial
title_short Inequalities for the Polar Derivative of a Polynomial
title_sort inequalities for the polar derivative of a polynomial
url http://www.journalofinequalitiesandapplications.com/content/2009/515709
work_keys_str_mv AT bidkhamm inequalitiesforthepolarderivativeofapolynomial
AT shakerim inequalitiesforthepolarderivativeofapolynomial
AT eshaghigordjim inequalitiesforthepolarderivativeofapolynomial