Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons

Models of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be a...

Full description

Bibliographic Details
Main Authors: D. R. Bowdalo, M. J. Evans, E. D. Sofen
Format: Article
Language:English
Published: Copernicus Publications 2016-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/16/8295/2016/acp-16-8295-2016.pdf
_version_ 1811200675101540352
author D. R. Bowdalo
M. J. Evans
E. D. Sofen
author_facet D. R. Bowdalo
M. J. Evans
E. D. Sofen
author_sort D. R. Bowdalo
collection DOAJ
description Models of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be assessed against observations to ensure that errors in model formulations are found and that model limitations are understood. A range of approaches are necessary for these comparisons. Here, we apply a spectral analysis methodology for this comparison. We use the Lomb–Scargle periodogram, a method similar to a Fourier transform, but better suited to deal with the gapped data sets typical of observational data. We apply this methodology to long-term hourly ozone observations and the equivalent model (GEOS-Chem) output. We show that the spectrally transformed observational data show a distinct power spectrum with regimes indicative of meteorological processes (weather, macroweather) and specific peaks observed at the daily and annual timescales together with corresponding harmonic peaks at one-half, one-third, etc., of these frequencies. Model output shows corresponding features. A comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We focus on the amplitude and phase of diurnal and seasonal cycles and present observational/model comparisons and discuss model performance. We find large biases notably for the seasonal cycle in the mid-latitude Northern Hemisphere where the amplitudes are generally overestimated by up to 16 ppbv, and phases are too late on the order of 1–5 months. This spectral methodology can be applied to a range of model–measurement applications and is highly suitable for Multimodel Intercomparison Projects (MIPs).
first_indexed 2024-04-12T02:07:38Z
format Article
id doaj.art-42d97c80b80d442ca6b20f9b21ae38e2
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-12T02:07:38Z
publishDate 2016-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-42d97c80b80d442ca6b20f9b21ae38e22022-12-22T03:52:29ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242016-07-01168295830810.5194/acp-16-8295-2016Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisonsD. R. Bowdalo0M. J. Evans1E. D. Sofen2Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UKModels of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be assessed against observations to ensure that errors in model formulations are found and that model limitations are understood. A range of approaches are necessary for these comparisons. Here, we apply a spectral analysis methodology for this comparison. We use the Lomb–Scargle periodogram, a method similar to a Fourier transform, but better suited to deal with the gapped data sets typical of observational data. We apply this methodology to long-term hourly ozone observations and the equivalent model (GEOS-Chem) output. We show that the spectrally transformed observational data show a distinct power spectrum with regimes indicative of meteorological processes (weather, macroweather) and specific peaks observed at the daily and annual timescales together with corresponding harmonic peaks at one-half, one-third, etc., of these frequencies. Model output shows corresponding features. A comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We focus on the amplitude and phase of diurnal and seasonal cycles and present observational/model comparisons and discuss model performance. We find large biases notably for the seasonal cycle in the mid-latitude Northern Hemisphere where the amplitudes are generally overestimated by up to 16 ppbv, and phases are too late on the order of 1–5 months. This spectral methodology can be applied to a range of model–measurement applications and is highly suitable for Multimodel Intercomparison Projects (MIPs).https://www.atmos-chem-phys.net/16/8295/2016/acp-16-8295-2016.pdf
spellingShingle D. R. Bowdalo
M. J. Evans
E. D. Sofen
Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons
Atmospheric Chemistry and Physics
title Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons
title_full Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons
title_fullStr Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons
title_full_unstemmed Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons
title_short Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons
title_sort spectral analysis of atmospheric composition application to surface ozone model measurement comparisons
url https://www.atmos-chem-phys.net/16/8295/2016/acp-16-8295-2016.pdf
work_keys_str_mv AT drbowdalo spectralanalysisofatmosphericcompositionapplicationtosurfaceozonemodelmeasurementcomparisons
AT mjevans spectralanalysisofatmosphericcompositionapplicationtosurfaceozonemodelmeasurementcomparisons
AT edsofen spectralanalysisofatmosphericcompositionapplicationtosurfaceozonemodelmeasurementcomparisons