Summary: | The strong adhesion of thermally conductive silicone encapsulants on highly integrated electronic devices can avoid external damages and lead to an improved long-term reliability, which is critical for their commercial application. However, due to their low surface energy and chemical reactivity, the self-adhesive ability of silicone encapsulants to substrates need to be explored further. Here, we developed epoxy and alkoxy groups-bifunctionalized tetramethylcyclotetrasiloxane (D<sub>4</sub>H-MSEP) and boron-modified polydimethylsiloxane (PDMS-B), which were synthesized and utilized as synergistic adhesion promoters to provide two-component addition-cured liquid silicone rubber (LSR) with a good self-adhesion ability for applications in electronic packaging at moderate temperatures. The chemical structures of D<sub>4</sub>H-MSEP and PDMS-B were characterized by Fourier transform infrared spectroscopy. The mass percentage of PDMS-B to D<sub>4</sub>H-MSEP, the adhesion promoters content and the curing temperature on the adhesion strength of LSR towards substrates were systematically investigated. In detail, the LSR with 2.0 wt% D<sub>4</sub>H-MSEP and 0.6 wt% PDMS-B exhibited a lap-shear strength of 1.12 MPa towards Al plates when curing at 80 °C, and the cohesive failure was also observed. The LSR presented a thermal conductivity of 1.59 W m<sup>−1</sup> K<sup>−1</sup> and good fluidity, which provided a sufficient heat dissipation ability and fluidity for potting applications with 85.7 wt% loading of spherical α-Al<sub>2</sub>O<sub>3</sub>. Importantly, 85 °C and 85% relative humidity durability testing demonstrated LSR with a good encapsulation capacity in long-term processes. This strategy endows LSR with a good self-adhesive ability at moderate temperatures, making it a promising material requiring long-term reliability in the encapsulation of temperature-sensitive electronic devices.
|