Regularised transfer learning for hyperspectral image classification
This study presents a transfer learning method for addressing the insufficient sample problem in hyperspectral image classification. In order to find common feature representation for both the source domain and target domain, we introduce a regularisation based on Bregman divergence into the objecti...
Główni autorzy: | Qian Shi, Yipeng Zhang, Xiaoping Liu, Kefei Zhao |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
Wiley
2019-03-01
|
Seria: | IET Computer Vision |
Hasła przedmiotowe: | |
Dostęp online: | https://doi.org/10.1049/iet-cvi.2018.5145 |
Podobne zapisy
-
Mental Workload Classification Method Based on EEG Cross-Session Subspace Alignment
od: Hongquan Qu, i wsp.
Wydane: (2022-05-01) -
Regularised estimation for ARMAX process with measurements subject to outliers
od: Yin, Le, i wsp.
Wydane: (2018) -
On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds
od: Frank Nielsen
Wydane: (2020-06-01) -
The Making of a ‘Colony’ in Karachi and the Politics of Regularisation
od: Haris Gazdar, i wsp.
Wydane: (2011-12-01) -
A Transfer-Based Framework for Underwater Target Detection from Hyperspectral Imagery
od: Zheyong Li, i wsp.
Wydane: (2023-02-01)