Evidence for Pathways of Concentrated Submarine Groundwater Discharge in East Antarctica from Helicopter-Borne Electrical Resistivity Measurements

The Southern Ocean receives limited liquid surface water input from the Antarctic continent. It has been speculated, however, that significant liquid water may flow from beneath the Antarctic Ice Sheet, and that this subglacial flow carries that water along with dissolved nutrients to the coast. The...

Full description

Bibliographic Details
Main Authors: Neil Foley, Slawek M. Tulaczyk, Denys Grombacher, Peter T. Doran, Jill Mikucki, Krista F. Myers, Nikolaj Foged, Hilary Dugan, Esben Auken, Ross Virginia
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Hydrology
Subjects:
Online Access:https://www.mdpi.com/2306-5338/6/2/54
Description
Summary:The Southern Ocean receives limited liquid surface water input from the Antarctic continent. It has been speculated, however, that significant liquid water may flow from beneath the Antarctic Ice Sheet, and that this subglacial flow carries that water along with dissolved nutrients to the coast. The delivery of solutes, particularly limiting nutrients like bioavailable iron, to the Southern Ocean may contribute to ecosystem processes including primary productivity. Using a helicopter-borne time domain electromagnetic survey along the coastal margins of the McMurdo Dry Valleys region of Southern Victoria Land, Antarctica, we detected subsurface connections between inland lakes, aquifers, and subglacial waters. These waters, which appear as electrically conductive anomalies, are saline and may contain high concentrations of biologically important ions, including iron and silica. Local hydraulic gradients may drive these waters to the coast, where we postulate they emerge as submarine groundwater discharge. This high latitude groundwater system, imaged regionally in the McMurdo Dry Valleys, may be representative of a broader system of Antarctic submarine groundwater discharge that fertilizes the Southern Ocean. In total, it has the potential to deliver tens of gigagrams of bioavailable Fe and Si to the coastal zone.
ISSN:2306-5338