Mixed-Stable Models: An Application to High-Frequency Financial Data

The paper extends the study of applying the mixed-stable models to the analysis of large sets of high-frequency financial data. The empirical data under review are the German DAX stock index yearly log-returns series. Mixed-stable models for 29 DAX companies are constructed employing efficient paral...

Full description

Bibliographic Details
Main Authors: Igoris Belovas, Leonidas Sakalauskas, Vadimas Starikovičius, Edward W. Sun
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/6/739
Description
Summary:The paper extends the study of applying the mixed-stable models to the analysis of large sets of high-frequency financial data. The empirical data under review are the German DAX stock index yearly log-returns series. Mixed-stable models for 29 DAX companies are constructed employing efficient parallel algorithms for the processing of long-term data series. The adequacy of the modeling is verified with the empirical characteristic function goodness-of-fit test. We propose the smart-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Δ</mo></semantics></math></inline-formula> method for the calculation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable probability density function. We study the impact of the accuracy of the computation of the probability density function and the accuracy of ML-optimization on the results of the modeling and processing time. The obtained mixed-stable parameter estimates can be used for the construction of the optimal asset portfolio.
ISSN:1099-4300