Peristalsis of Nanofluids via an Inclined Asymmetric Channel with Hall Effects and Entropy Generation Analysis

This study deals with the entropy investigation of the peristalsis of a water–copper nanofluid through an asymmetric inclined channel. The asymmetric channel is anticipated to be filled with a uniform permeable medium, with a constant magnetic field impinging on the wall of the channel. The physical...

Full description

Bibliographic Details
Main Author: Abdulwahed Muaybid A. Alrashdi
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/2/458
Description
Summary:This study deals with the entropy investigation of the peristalsis of a water–copper nanofluid through an asymmetric inclined channel. The asymmetric channel is anticipated to be filled with a uniform permeable medium, with a constant magnetic field impinging on the wall of the channel. The physical effects, such as Hall current, mixed convection, Ohmic heating, and heat generation/annihilation, are also considered. Mathematical modeling from the given physical description is formulated while employing the “long wavelength, low Reynolds number” approximations. Analytical and numerical procedures allow for the determination of flow behavior in the resulting system, the results of which are presented in the form of tables and graphs, in order to facilitate the physical analysis. The results indicate that the growth of nanoparticle volume fraction corresponds to a reduction in temperature, entropy generation, velocity, and pressure gradient. The enhanced Hall and Brinkman parameters reduce the entropy generation and temperature for such flows, whereas the enhanced permeability parameter reduces the velocity and pressure gradient considerably. Furthermore, a comparison of the heat transfer rates for the two results, for different physical parameters, indicates that these results agree well. The significance of the underlying study lies in the fact that it analyzes the peristalsis of a non-Newtonian nanofluid, where the rheological characteristics of the fluid are predicted using the Carreau-Yasuda model and by considering the various physical effects.
ISSN:2227-7390