Metallic foam supported electrodes for molten carbonate fuel cells

This paper demonstrates the benefits of using a metallic foam support within molten carbonate fuel cell (MCFC) cathodes. A state-of-the-art fabrication process based on tape casting has been developed to produce microporous electrodes with a nickel foam scaffold. Surfactant was added to control the...

Full description

Bibliographic Details
Main Authors: T. Wejrzanowski, K. Cwieka, J. Skibinski, T. Brynk, S. Haj Ibrahim, J. Milewski, W. Xing
Format: Article
Language:English
Published: Elsevier 2020-08-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127520303981
Description
Summary:This paper demonstrates the benefits of using a metallic foam support within molten carbonate fuel cell (MCFC) cathodes. A state-of-the-art fabrication process based on tape casting has been developed to produce microporous electrodes with a nickel foam scaffold. Surfactant was added to control the depth to which the slurry infiltrated the foam. New cathodes were used as an alternative to the traditional cathode in the single cell assembly and were tested for power density. Mechanical properties were compared with the current state-of-the-art. The results show that the use of metallic foams for high temperature fuel cell electrodes is beneficial from the technological point of view, especially in larger scale production. It was also found that the resultant continuous metallic structure of the microporous electrodes delivered a slight enhancement to fuel cell power density.
ISSN:0264-1275