Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems
Fully implantable, self-powered hearing aids with no external unit could significantly increase the life quality of patients suffering severe hearing loss. This highly demanding concept, however, requires a strongly miniaturized device which is fully implantable in the middle/inner ear and includes...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-10-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/8/10/311 |
_version_ | 1811257375715229696 |
---|---|
author | Péter Udvardi János Radó András Straszner János Ferencz Zoltán Hajnal Saeedeh Soleimani Michael Schneider Ulrich Schmid Péter Révész János Volk |
author_facet | Péter Udvardi János Radó András Straszner János Ferencz Zoltán Hajnal Saeedeh Soleimani Michael Schneider Ulrich Schmid Péter Révész János Volk |
author_sort | Péter Udvardi |
collection | DOAJ |
description | Fully implantable, self-powered hearing aids with no external unit could significantly increase the life quality of patients suffering severe hearing loss. This highly demanding concept, however, requires a strongly miniaturized device which is fully implantable in the middle/inner ear and includes the following components: frequency selective microphone or accelerometer, energy harvesting device, speech processor, and cochlear multielectrode. Here we demonstrate a low volume, piezoelectric micro-electromechanical system (MEMS) cantilever array which is sensitive, even in the lower part of the voice frequency range (300–700 Hz). The test array consisting of 16 cantilevers has been fabricated by standard bulk micromachining using a Si-on-Insulator (SOI) wafer and aluminum nitride (AlN) as a complementary metal-oxide-semiconductor (CMOS) and biocompatible piezoelectric material. The low frequency and low device footprint are ensured by Archimedean spiral geometry and Si seismic mass. Experimentally detected resonance frequencies were validated by an analytical model. The generated open circuit voltage (3–10 mV) is sufficient for the direct analog conversion of the signals for cochlear multielectrode implants. |
first_indexed | 2024-04-12T17:56:28Z |
format | Article |
id | doaj.art-43347af91fc442bf9b2b71e08e8bd040 |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-04-12T17:56:28Z |
publishDate | 2017-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-43347af91fc442bf9b2b71e08e8bd0402022-12-22T03:22:20ZengMDPI AGMicromachines2072-666X2017-10-0181031110.3390/mi8100311mi8100311Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing SystemsPéter Udvardi0János Radó1András Straszner2János Ferencz3Zoltán Hajnal4Saeedeh Soleimani5Michael Schneider6Ulrich Schmid7Péter Révész8János Volk9Institute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, HungaryInstitute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, HungaryInstitute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, HungaryInstitute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, HungaryInstitute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, HungaryInstitute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, HungaryInstitute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, AustriaInstitute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, AustriaDepartment of Otorhinolaryngology-Head and Neck Surgery, Clinical Center, University of Pécs, H-7601 Pécs, HungaryInstitute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, HungaryFully implantable, self-powered hearing aids with no external unit could significantly increase the life quality of patients suffering severe hearing loss. This highly demanding concept, however, requires a strongly miniaturized device which is fully implantable in the middle/inner ear and includes the following components: frequency selective microphone or accelerometer, energy harvesting device, speech processor, and cochlear multielectrode. Here we demonstrate a low volume, piezoelectric micro-electromechanical system (MEMS) cantilever array which is sensitive, even in the lower part of the voice frequency range (300–700 Hz). The test array consisting of 16 cantilevers has been fabricated by standard bulk micromachining using a Si-on-Insulator (SOI) wafer and aluminum nitride (AlN) as a complementary metal-oxide-semiconductor (CMOS) and biocompatible piezoelectric material. The low frequency and low device footprint are ensured by Archimedean spiral geometry and Si seismic mass. Experimentally detected resonance frequencies were validated by an analytical model. The generated open circuit voltage (3–10 mV) is sufficient for the direct analog conversion of the signals for cochlear multielectrode implants.https://www.mdpi.com/2072-666X/8/10/311artificial basilar membranecochlear implantfrequency selectivityArchimedean spiralaluminum nitride (AlN)piezoelectric cantilevermicro-electromechanical system (MEMS)finite element analysisenergy harvesting |
spellingShingle | Péter Udvardi János Radó András Straszner János Ferencz Zoltán Hajnal Saeedeh Soleimani Michael Schneider Ulrich Schmid Péter Révész János Volk Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems Micromachines artificial basilar membrane cochlear implant frequency selectivity Archimedean spiral aluminum nitride (AlN) piezoelectric cantilever micro-electromechanical system (MEMS) finite element analysis energy harvesting |
title | Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems |
title_full | Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems |
title_fullStr | Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems |
title_full_unstemmed | Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems |
title_short | Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems |
title_sort | spiral shaped piezoelectric mems cantilever array for fully implantable hearing systems |
topic | artificial basilar membrane cochlear implant frequency selectivity Archimedean spiral aluminum nitride (AlN) piezoelectric cantilever micro-electromechanical system (MEMS) finite element analysis energy harvesting |
url | https://www.mdpi.com/2072-666X/8/10/311 |
work_keys_str_mv | AT peterudvardi spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT janosrado spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT andrasstraszner spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT janosferencz spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT zoltanhajnal spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT saeedehsoleimani spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT michaelschneider spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT ulrichschmid spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT peterrevesz spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems AT janosvolk spiralshapedpiezoelectricmemscantileverarrayforfullyimplantablehearingsystems |