Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications

Detailed radiative transfer simulations of kilonovae are difficult to apply directly to observations; they only sparsely cover simulation parameters, such as the mass, velocity, morphology, and composition of the ejecta. On the other hand, semianalytic models for kilonovae can be evaluated continuou...

Full description

Bibliographic Details
Main Authors: M. Ristic, E. Champion, R. O'Shaughnessy, R. Wollaeger, O. Korobkin, E. A. Chase, C. L. Fryer, A. L. Hungerford, C. J. Fontes
Format: Article
Language:English
Published: American Physical Society 2022-01-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.4.013046
_version_ 1797210848794509312
author M. Ristic
E. Champion
R. O'Shaughnessy
R. Wollaeger
O. Korobkin
E. A. Chase
C. L. Fryer
A. L. Hungerford
C. J. Fontes
author_facet M. Ristic
E. Champion
R. O'Shaughnessy
R. Wollaeger
O. Korobkin
E. A. Chase
C. L. Fryer
A. L. Hungerford
C. J. Fontes
author_sort M. Ristic
collection DOAJ
description Detailed radiative transfer simulations of kilonovae are difficult to apply directly to observations; they only sparsely cover simulation parameters, such as the mass, velocity, morphology, and composition of the ejecta. On the other hand, semianalytic models for kilonovae can be evaluated continuously over model parameters, but neglect important physical details which are not incorporated in the simulations, thus introducing systematic bias. Starting with a grid of two-dimensional anisotropic simulations of kilonova light curves covering a wide range of ejecta properties, we apply adaptive learning techniques to iteratively choose new simulations and produce high-fidelity surrogate models for those simulations. These surrogate models allow for continuous evaluation across model parameters while retaining the microphysical details about the ejecta. Using a code formultimessenger inference developed by our group, we demonstrate how to use our interpolated models to infer kilonova parameters. Comparing to inferences using simplified analytic models, we recover different ejecta properties. We discuss the implications of this analysis which is qualitatively consistent with similar previous work using detailed ejecta opacity calculations and which illustrates systematic challenges for kilonova modeling. An associated data and code release provides our interpolated light-curve models, interpolation implementation which can be applied to reproduce our work or extend to new models, and our multimessenger parameter inference engine.
first_indexed 2024-04-24T10:17:07Z
format Article
id doaj.art-43370525493f4e41b9a271d70d6a41d3
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:17:07Z
publishDate 2022-01-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-43370525493f4e41b9a271d70d6a41d32024-04-12T17:17:20ZengAmerican Physical SocietyPhysical Review Research2643-15642022-01-014101304610.1103/PhysRevResearch.4.013046Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applicationsM. RisticE. ChampionR. O'ShaughnessyR. WollaegerO. KorobkinE. A. ChaseC. L. FryerA. L. HungerfordC. J. FontesDetailed radiative transfer simulations of kilonovae are difficult to apply directly to observations; they only sparsely cover simulation parameters, such as the mass, velocity, morphology, and composition of the ejecta. On the other hand, semianalytic models for kilonovae can be evaluated continuously over model parameters, but neglect important physical details which are not incorporated in the simulations, thus introducing systematic bias. Starting with a grid of two-dimensional anisotropic simulations of kilonova light curves covering a wide range of ejecta properties, we apply adaptive learning techniques to iteratively choose new simulations and produce high-fidelity surrogate models for those simulations. These surrogate models allow for continuous evaluation across model parameters while retaining the microphysical details about the ejecta. Using a code formultimessenger inference developed by our group, we demonstrate how to use our interpolated models to infer kilonova parameters. Comparing to inferences using simplified analytic models, we recover different ejecta properties. We discuss the implications of this analysis which is qualitatively consistent with similar previous work using detailed ejecta opacity calculations and which illustrates systematic challenges for kilonova modeling. An associated data and code release provides our interpolated light-curve models, interpolation implementation which can be applied to reproduce our work or extend to new models, and our multimessenger parameter inference engine.http://doi.org/10.1103/PhysRevResearch.4.013046
spellingShingle M. Ristic
E. Champion
R. O'Shaughnessy
R. Wollaeger
O. Korobkin
E. A. Chase
C. L. Fryer
A. L. Hungerford
C. J. Fontes
Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications
Physical Review Research
title Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications
title_full Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications
title_fullStr Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications
title_full_unstemmed Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications
title_short Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications
title_sort interpolating detailed simulations of kilonovae adaptive learning and parameter inference applications
url http://doi.org/10.1103/PhysRevResearch.4.013046
work_keys_str_mv AT mristic interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT echampion interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT roshaughnessy interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT rwollaeger interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT okorobkin interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT eachase interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT clfryer interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT alhungerford interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications
AT cjfontes interpolatingdetailedsimulationsofkilonovaeadaptivelearningandparameterinferenceapplications