Wiener–Hosoya Matrix of Connected Graphs

Let <i>G</i> be a connected (molecular) graph with the vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi>&...

Full description

Bibliographic Details
Main Authors: Hassan Ibrahim, Reza Sharafdini, Tamás Réti, Abolape Akwu
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/4/359
Description
Summary:Let <i>G</i> be a connected (molecular) graph with the vertex set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>v</mi><mi>n</mi></msub><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>i</mi></msub></semantics></math></inline-formula> denote, respectively, the vertex degree and the transmission of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula>, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></mrow></semantics></math></inline-formula>. In this paper, we aim to provide a new matrix description of the celebrated Wiener index. In fact, we introduce the Wiener–Hosoya matrix of <i>G</i>, which is defined as the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix whose <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></semantics></math></inline-formula>-entry is equal to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><msub><mi>σ</mi><mi>i</mi></msub><mrow><mn>2</mn><msub><mi>d</mi><mi>i</mi></msub></mrow></mfrac><mo>+</mo><mfrac><msub><mi>σ</mi><mi>j</mi></msub><mrow><mn>2</mn><msub><mi>d</mi><mi>j</mi></msub></mrow></mfrac></mrow></semantics></math></inline-formula> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> are adjacent and 0 otherwise. Some properties, including upper and lower bounds for the eigenvalues of the Wiener–Hosoya matrix are obtained and the extremal cases are described. Further, we introduce the energy of this matrix.
ISSN:2227-7390