A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP

This paper presents a discrete particle swarm optimization (DPSO) algorithm with heterogeneous (non-uniform) parameter values for solving the dynamic traveling salesman problem (DTSP). The DTSP can be modeled as a sequence of static sub-problems, each of which is an instance of the TSP. In the propo...

Full description

Bibliographic Details
Main Authors: Łukasz Strąk, Rafał Skinderowicz, Urszula Boryczka, Arkadiusz Nowakowski
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/8/738
_version_ 1811187128272420864
author Łukasz Strąk
Rafał Skinderowicz
Urszula Boryczka
Arkadiusz Nowakowski
author_facet Łukasz Strąk
Rafał Skinderowicz
Urszula Boryczka
Arkadiusz Nowakowski
author_sort Łukasz Strąk
collection DOAJ
description This paper presents a discrete particle swarm optimization (DPSO) algorithm with heterogeneous (non-uniform) parameter values for solving the dynamic traveling salesman problem (DTSP). The DTSP can be modeled as a sequence of static sub-problems, each of which is an instance of the TSP. In the proposed DPSO algorithm, the information gathered while solving a sub-problem is retained in the form of a pheromone matrix and used by the algorithm while solving the next sub-problem. We present a method for automatically setting the values of the key DPSO parameters (except for the parameters directly related to the computation time and size of a problem).We show that the diversity of parameters values has a positive effect on the quality of the generated results. Furthermore, the population in the proposed algorithm has a higher level of entropy. We compare the performance of the proposed heterogeneous DPSO with two ant colony optimization (ACO) algorithms. The proposed algorithm outperforms the base DPSO and is competitive with the ACO.
first_indexed 2024-04-11T13:57:49Z
format Article
id doaj.art-433dcce6b8ed4d1b87a084b141de9f6c
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T13:57:49Z
publishDate 2019-07-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-433dcce6b8ed4d1b87a084b141de9f6c2022-12-22T04:20:12ZengMDPI AGEntropy1099-43002019-07-0121873810.3390/e21080738e21080738A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSPŁukasz Strąk0Rafał Skinderowicz1Urszula Boryczka2Arkadiusz Nowakowski3Institute of Computer Science, University of Silesia in Katowice, Będzińska 39, 41-205 Sosnowiec, PolandInstitute of Computer Science, University of Silesia in Katowice, Będzińska 39, 41-205 Sosnowiec, PolandInstitute of Computer Science, University of Silesia in Katowice, Będzińska 39, 41-205 Sosnowiec, PolandInstitute of Computer Science, University of Silesia in Katowice, Będzińska 39, 41-205 Sosnowiec, PolandThis paper presents a discrete particle swarm optimization (DPSO) algorithm with heterogeneous (non-uniform) parameter values for solving the dynamic traveling salesman problem (DTSP). The DTSP can be modeled as a sequence of static sub-problems, each of which is an instance of the TSP. In the proposed DPSO algorithm, the information gathered while solving a sub-problem is retained in the form of a pheromone matrix and used by the algorithm while solving the next sub-problem. We present a method for automatically setting the values of the key DPSO parameters (except for the parameters directly related to the computation time and size of a problem).We show that the diversity of parameters values has a positive effect on the quality of the generated results. Furthermore, the population in the proposed algorithm has a higher level of entropy. We compare the performance of the proposed heterogeneous DPSO with two ant colony optimization (ACO) algorithms. The proposed algorithm outperforms the base DPSO and is competitive with the ACO.https://www.mdpi.com/1099-4300/21/8/738dynamic traveling salesman problempheromonediscrete particle swarm optimizationheterogeneoushomogeneous
spellingShingle Łukasz Strąk
Rafał Skinderowicz
Urszula Boryczka
Arkadiusz Nowakowski
A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP
Entropy
dynamic traveling salesman problem
pheromone
discrete particle swarm optimization
heterogeneous
homogeneous
title A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP
title_full A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP
title_fullStr A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP
title_full_unstemmed A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP
title_short A Self-Adaptive Discrete PSO Algorithm with Heterogeneous Parameter Values for Dynamic TSP
title_sort self adaptive discrete pso algorithm with heterogeneous parameter values for dynamic tsp
topic dynamic traveling salesman problem
pheromone
discrete particle swarm optimization
heterogeneous
homogeneous
url https://www.mdpi.com/1099-4300/21/8/738
work_keys_str_mv AT łukaszstrak aselfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp
AT rafałskinderowicz aselfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp
AT urszulaboryczka aselfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp
AT arkadiusznowakowski aselfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp
AT łukaszstrak selfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp
AT rafałskinderowicz selfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp
AT urszulaboryczka selfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp
AT arkadiusznowakowski selfadaptivediscretepsoalgorithmwithheterogeneousparametervaluesfordynamictsp