Causal graph extraction from news: a comparative study of time-series causality learning techniques
Causal graph extraction from news has the potential to aid in the understanding of complex scenarios. In particular, it can help explain and predict events, as well as conjecture about possible cause-effect connections. However, limited work has addressed the problem of large-scale extraction of cau...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2022-08-01
|
Series: | PeerJ Computer Science |
Subjects: | |
Online Access: | https://peerj.com/articles/cs-1066.pdf |