Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth
Maternal pregnancy fatty acid status is associated with child health. Epigenetic gestational age acceleration, referring to a discrepancy between chronological and epigenetic gestational age, may underlie these associations. Previous research suggests that analysing fatty acid patterns rather than i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2022-11-01
|
Series: | Epigenetics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/15592294.2022.2076051 |
_version_ | 1797678809988726784 |
---|---|
author | Giulietta S. Monasso Trudy Voortman Janine F. Felix |
author_facet | Giulietta S. Monasso Trudy Voortman Janine F. Felix |
author_sort | Giulietta S. Monasso |
collection | DOAJ |
description | Maternal pregnancy fatty acid status is associated with child health. Epigenetic gestational age acceleration, referring to a discrepancy between chronological and epigenetic gestational age, may underlie these associations. Previous research suggests that analysing fatty acid patterns rather than individual fatty acids may overcome the caveat of missing synergistic or additive effects. Among 1226 mother-newborn pairs from the population-based Generation R Study, we examined the associations of three maternal plasma mid-pregnancy fatty acid patterns, identified by principal component analysis, with offspring epigenetic gestational age acceleration. This was estimated from cord blood DNA methylation data using the method developed by Bohlin. As a secondary analysis, we used the method developed by Knight to estimate epigenetic gestational age. The identified ‘high n-6 polyunsaturated fatty acid,’ ‘monounsaturated and saturated fatty acid’ and ‘high n-3 polyunsaturated fatty acid’ patterns were not associated with epigenetic gestational age acceleration in the main analyses. In sensitivity analyses restricted to 337 children born to mothers with more accurate pregnancy dating based on a regular menstrual cycle, a one standard-deviation-score higher maternal plasma ‘high n-3 polyunsaturated fatty acid’ pattern was associated with an epigenetic gestational age acceleration of 0.20 weeks (95% CI 0.06, 0.33), but only when using the Knight method. Thus, we found some evidence that a maternal plasma fatty acid pattern characterized by higher concentrations of n-3 polyunsaturated fatty acids may be associated with accelerated epigenetic gestational ageing. These findings depended on the method used and the accuracy of pregnancy dating and therefore need confirmation. |
first_indexed | 2024-03-11T23:05:20Z |
format | Article |
id | doaj.art-43530167bbe1450ebf04da7d5af2cd9f |
institution | Directory Open Access Journal |
issn | 1559-2294 1559-2308 |
language | English |
last_indexed | 2024-03-11T23:05:20Z |
publishDate | 2022-11-01 |
publisher | Taylor & Francis Group |
record_format | Article |
series | Epigenetics |
spelling | doaj.art-43530167bbe1450ebf04da7d5af2cd9f2023-09-21T13:23:12ZengTaylor & Francis GroupEpigenetics1559-22941559-23082022-11-0117111562157210.1080/15592294.2022.20760512076051Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birthGiulietta S. Monasso0Trudy Voortman1Janine F. Felix2Erasmus MC, University Medical Center RotterdamErasmus MC, University Medical CenterErasmus MC, University Medical Center RotterdamMaternal pregnancy fatty acid status is associated with child health. Epigenetic gestational age acceleration, referring to a discrepancy between chronological and epigenetic gestational age, may underlie these associations. Previous research suggests that analysing fatty acid patterns rather than individual fatty acids may overcome the caveat of missing synergistic or additive effects. Among 1226 mother-newborn pairs from the population-based Generation R Study, we examined the associations of three maternal plasma mid-pregnancy fatty acid patterns, identified by principal component analysis, with offspring epigenetic gestational age acceleration. This was estimated from cord blood DNA methylation data using the method developed by Bohlin. As a secondary analysis, we used the method developed by Knight to estimate epigenetic gestational age. The identified ‘high n-6 polyunsaturated fatty acid,’ ‘monounsaturated and saturated fatty acid’ and ‘high n-3 polyunsaturated fatty acid’ patterns were not associated with epigenetic gestational age acceleration in the main analyses. In sensitivity analyses restricted to 337 children born to mothers with more accurate pregnancy dating based on a regular menstrual cycle, a one standard-deviation-score higher maternal plasma ‘high n-3 polyunsaturated fatty acid’ pattern was associated with an epigenetic gestational age acceleration of 0.20 weeks (95% CI 0.06, 0.33), but only when using the Knight method. Thus, we found some evidence that a maternal plasma fatty acid pattern characterized by higher concentrations of n-3 polyunsaturated fatty acids may be associated with accelerated epigenetic gestational ageing. These findings depended on the method used and the accuracy of pregnancy dating and therefore need confirmation.http://dx.doi.org/10.1080/15592294.2022.2076051fatty acidspregnancychilddna methylationepigenetic clockepigenetic agegestational age accelerationcohort study |
spellingShingle | Giulietta S. Monasso Trudy Voortman Janine F. Felix Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth Epigenetics fatty acids pregnancy child dna methylation epigenetic clock epigenetic age gestational age acceleration cohort study |
title | Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth |
title_full | Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth |
title_fullStr | Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth |
title_full_unstemmed | Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth |
title_short | Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth |
title_sort | maternal plasma fatty acid patterns in mid pregnancy and offspring epigenetic gestational age at birth |
topic | fatty acids pregnancy child dna methylation epigenetic clock epigenetic age gestational age acceleration cohort study |
url | http://dx.doi.org/10.1080/15592294.2022.2076051 |
work_keys_str_mv | AT giuliettasmonasso maternalplasmafattyacidpatternsinmidpregnancyandoffspringepigeneticgestationalageatbirth AT trudyvoortman maternalplasmafattyacidpatternsinmidpregnancyandoffspringepigeneticgestationalageatbirth AT janineffelix maternalplasmafattyacidpatternsinmidpregnancyandoffspringepigeneticgestationalageatbirth |