Summary: | The content of wheat flour proteins affects the quality of wheat flour. Sulfur nutrition in wheat can change the protein content of the flour. The inconsistency and instability of wheat grain quality during grain filling under high temperature stress (HTS) are a major challenge to the production of high-quality wheat. The effects of sulfur fertilization and HTS on wheat flour protein and its components are unknown. In this study, treatments varying two factors: sulfur fertilization and exposure to short-term HTS, at 20 days post-anthesis, were applied to two wheat cultivars with differing gluten types. Plants of a strong-gluten wheat (Gaoyou 2018) and a medium-gluten wheat (Zhongmai 8) were grown in pots in Beijing in 2015–2017. HTS significantly increased the contents of total protein, albumin, gliadin, glutenin, Cys, and Met in wheat kernels, but reduced grain yield, grain weight, protein yield, globulin content, and total starch accumulation. The HTS-induced increase in total protein amount was closely associated with nitrate reductase (NR) and glutamine synthetase (GS) activities in flag leaves. Sulfur fertilization increased grain and protein yields; grain weight; total protein, albumin, gliadin, glutenin, and globulin contents; protein yield; total starch; Cys, Met; and NR and GS activities. HTS and sulfur fertilization had larger effects on the strong- than on the medium-gluten cultivar. Sulfur fertilization also alleviated the negative effects of HTS on grain yield, protein yield, and starch content. Thus, growing wheat with additional soil sulfur can improve the quality of the flour. Keywords: Triticum aestivum L., Sulfur fertilization, Strong gluten, Climate warming
|